메뉴 건너뛰기




Volumn 50, Issue C, 2015, Pages 81-90

A framework for knowledge discovery in massive building automation data and its application in building diagnostics

Author keywords

Building Automation System; Building diagnostics; Building energy performance; Data mining

Indexed keywords

ANALYSIS OF VARIANCE (ANOVA); AUTOMATION; DATA HANDLING; ELECTRIC POWER UTILIZATION; INTELLIGENT BUILDINGS;

EID: 84926181274     PISSN: 09265805     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.autcon.2014.12.006     Document Type: Article
Times cited : (194)

References (28)
  • 2
    • 84926205813 scopus 로고    scopus 로고
    • International Energy Agency (iea) accessed on Apr 9, 2014
    • International Energy Agency (IEA) accessed on Apr 9, 2014 https://www.iea.org/aboutus/faqs/energyefficiency/
  • 4
    • 14544268558 scopus 로고    scopus 로고
    • Methods for fault detection, diagnostics, and prognostics for building systems - A review, part i & II
    • (169-187)
    • S. Katipamula, and M.R. Brambley Methods for fault detection, diagnostics, and prognostics for building systems - a review, part I & II HVAC&R Res. 11 1-2 2005 3 25 (169-187)
    • (2005) HVAC&R Res. , vol.11 , Issue.12 , pp. 3-25
    • Katipamula, S.1    Brambley, M.R.2
  • 5
    • 85060795153 scopus 로고    scopus 로고
    • 10 breakthrough technologies
    • Massachusetts Institute of Technology Cambridge, MA, USA
    • 10 breakthrough technologies MIT Technology Review January/February 2001 Massachusetts Institute of Technology Cambridge, MA, USA
    • (2001) MIT Technology Review
  • 7
    • 42749086772 scopus 로고    scopus 로고
    • Combined use of unsupervised and supervised learning for daily peak load forecasting
    • M.R. Amin-Naseri, and A.R. Soroush Combined use of unsupervised and supervised learning for daily peak load forecasting Energy Convers. Manag. 49 6 2008 1302 1308
    • (2008) Energy Convers. Manag. , vol.49 , Issue.6 , pp. 1302-1308
    • Amin-Naseri, M.R.1    Soroush, A.R.2
  • 8
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • B. Dong, C. Cao, and S.E. Lee Applying support vector machines to predict building energy consumption in tropical region Energy Build. 37 5 2005 545 553
    • (2005) Energy Build. , vol.37 , Issue.5 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 9
    • 84890126054 scopus 로고    scopus 로고
    • Smart meter monitoring and data mining techniques for predicting refrigeration system performance
    • J.S. Chou, Y.C. Hsu, and L.T. Lin Smart meter monitoring and data mining techniques for predicting refrigeration system performance Expert Syst. Appl. 41 5 2014 2144 2156
    • (2014) Expert Syst. Appl. , vol.41 , Issue.5 , pp. 2144-2156
    • Chou, J.S.1    Hsu, Y.C.2    Lin, L.T.3
  • 10
    • 84897823685 scopus 로고    scopus 로고
    • Fault detection analysis of building energy consumption using data mining techniques
    • I. Khan, A. Capozzoli, S.P. Corgnati, and T. Cerquitelli Fault detection analysis of building energy consumption using data mining techniques Energy Procedia 42 57 2013 557 566
    • (2013) Energy Procedia , vol.42 , Issue.57 , pp. 557-566
    • Khan, I.1    Capozzoli, A.2    Corgnati, S.P.3    Cerquitelli, T.4
  • 11
    • 33646411785 scopus 로고    scopus 로고
    • Data mining based sensor fault diagnosis and validation for building air conditioning system
    • Z.J. Hou, Z.W. Lian, Y. Yao, and X.J. Yuan Data mining based sensor fault diagnosis and validation for building air conditioning system Energy Convers. Manag. 47 15-16 2006 2479 2490
    • (2006) Energy Convers. Manag. , vol.47 , Issue.1516 , pp. 2479-2490
    • Hou, Z.J.1    Lian, Z.W.2    Yao, Y.3    Yuan, X.J.4
  • 12
    • 84875818053 scopus 로고    scopus 로고
    • Development of an RDP neural network for building energy consumption fault detection and diagnosis
    • F. Magoules, H.X. Zhao, and D. Elizondo Development of an RDP neural network for building energy consumption fault detection and diagnosis Energy Build. 62 18 2013 133 138
    • (2013) Energy Build. , vol.62 , Issue.18 , pp. 133-138
    • Magoules, F.1    Zhao, H.X.2    Elizondo, D.3
  • 13
    • 77954087387 scopus 로고    scopus 로고
    • Modeling and optimization of HVAC energy consumption
    • A. Kusiak, M.Y. Li, and F. Tang Modeling and optimization of HVAC energy consumption Appl. Energy 87 10 2010 3092 3102
    • (2010) Appl. Energy , vol.87 , Issue.10 , pp. 3092-3102
    • Kusiak, A.1    Li, M.Y.2    Tang, F.3
  • 14
    • 79955660257 scopus 로고    scopus 로고
    • Multi-objective optimization of HVAC system with an evolutionary computation algorithm
    • A. Kusiak, F. Tang, and G.L. Xu Multi-objective optimization of HVAC system with an evolutionary computation algorithm Energy 36 5 2011 2440 2449
    • (2011) Energy , vol.36 , Issue.5 , pp. 2440-2449
    • Kusiak, A.1    Tang, F.2    Xu, G.L.3
  • 15
  • 16
    • 33748889329 scopus 로고    scopus 로고
    • Sequencing of chillers by estimating chiller power consumption using artificial neural networks
    • Y.C. Chang Sequencing of chillers by estimating chiller power consumption using artificial neural networks Build. Environ. 42 1 2007 180 188
    • (2007) Build. Environ. , vol.42 , Issue.1 , pp. 180-188
    • Chang, Y.C.1
  • 18
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference and Prediction
    • 2nd edition Springer New York, USA
    • T. Hastie, R. Tibshirani, and J. Friedman The Elements of Statistical Learning: Data Mining, Inference and Prediction 2nd edition Springer Series in Statistics 2009 Springer New York, USA
    • (2009) Springer Series in Statistics
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 19
    • 58949085492 scopus 로고    scopus 로고
    • A data fusion scheme for building automation systems of building central chilling plants
    • G.S. Huang, S.W. Wang, F. Xiao, and Y.J. Sun A data fusion scheme for building automation systems of building central chilling plants Autom. Constr. 18 3 2009 302 309
    • (2009) Autom. Constr. , vol.18 , Issue.3 , pp. 302-309
    • Huang, G.S.1    Wang, S.W.2    Xiao, F.3    Sun, Y.J.4
  • 20
    • 33744524057 scopus 로고    scopus 로고
    • A diagnostic tool for online sensor health monitoring in air-conditioning systems
    • F. Xiao, S.W. Wang, and J.P. Zhang A diagnostic tool for online sensor health monitoring in air-conditioning systems Autom. Constr. 15 4 2006 489 503
    • (2006) Autom. Constr. , vol.15 , Issue.4 , pp. 489-503
    • Xiao, F.1    Wang, S.W.2    Zhang, J.P.3
  • 22
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • L.P. Jing, M.K. Ng, and J.Z. Huang An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data IEEE Trans. Knowl. Data Eng. 19 8 2007 1026 1041
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.8 , pp. 1026-1041
    • Jing, L.P.1    Ng, M.K.2    Huang, J.Z.3
  • 24
    • 84857063430 scopus 로고    scopus 로고
    • A novel methodology for knowledge discovery through mining associations between building operational data
    • Z. Yu, F. Haghighat, C.M. Fung, and L. Zhou A novel methodology for knowledge discovery through mining associations between building operational data Energy Build. 47 50 2012 430 440
    • (2012) Energy Build. , vol.47 , Issue.50 , pp. 430-440
    • Yu, Z.1    Haghighat, F.2    Fung, C.M.3    Zhou, L.4
  • 25
    • 84875856634 scopus 로고    scopus 로고
    • Data association mining for identifying lighting energy waste patterns in educational institutes
    • D.F.M. Cabrera, and H. Zareipour Data association mining for identifying lighting energy waste patterns in educational institutes Energy Build. 62 26 2013 210 216
    • (2013) Energy Build. , vol.62 , Issue.26 , pp. 210-216
    • Cabrera, D.F.M.1    Zareipour, H.2
  • 26
    • 84897723089 scopus 로고    scopus 로고
    • Data mining in building automation system for improving building operational performance
    • F. Xiao, and C. Fan Data mining in building automation system for improving building operational performance Energy Build. 75 11 2014 109 118
    • (2014) Energy Build. , vol.75 , Issue.11 , pp. 109-118
    • Xiao, F.1    Fan, C.2
  • 28
    • 44249088788 scopus 로고    scopus 로고
    • A supervisory control strategy for building cooling water systems for practical and real time applications
    • Z.J. Ma, S.W. Wang, X.H. Xu, and F. Xiao A supervisory control strategy for building cooling water systems for practical and real time applications Energy Convers. Manag. 49 8 2008 2324 2336
    • (2008) Energy Convers. Manag. , vol.49 , Issue.8 , pp. 2324-2336
    • Ma, Z.J.1    Wang, S.W.2    Xu, X.H.3    Xiao, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.