메뉴 건너뛰기




Volumn 75, Issue , 2014, Pages 109-118

Data mining in building automation system for improving building operational performance

Author keywords

Association rule mining; Building automation system; Clustering analysis; Data mining; Feature extraction; Recursive partitioning

Indexed keywords

BUILDING AUTOMATION SYSTEMS; BUILDING OPERATIONS; BUILDING PERFORMANCE; CLUSTERING ANALYSIS; CONSUMPTION PATTERNS; DATA PREPARATION; OPERATIONAL PERFORMANCE; RECURSIVE PARTITIONING;

EID: 84897723089     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2014.02.005     Document Type: Article
Times cited : (228)

References (22)
  • 2
    • 84880750389 scopus 로고    scopus 로고
    • Hong Kong Electrical & Mechanical Services Department
    • Hong Kong Energy End-use Data 2012 September 2012 Hong Kong Electrical & Mechanical Services Department
    • (2012) Hong Kong Energy End-use Data 2012
  • 3
    • 77955576090 scopus 로고    scopus 로고
    • Life cycle energy analysis of buildings: An overview
    • T. Ramesh, R. Prakash, and K.K. Shukla Life cycle energy analysis of buildings: an overview Energy and Buildings 42 10 2010 1592 1600
    • (2010) Energy and Buildings , vol.42 , Issue.10 , pp. 1592-1600
    • Ramesh, T.1    Prakash, R.2    Shukla, K.K.3
  • 5
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • B. Dong, C. Cao, and S.E. Lee Applying support vector machines to predict building energy consumption in tropical region Energy and Buildings 37 2005 545 553
    • (2005) Energy and Buildings , vol.37 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 6
    • 42749086772 scopus 로고    scopus 로고
    • Combined use of unsupervised and supervised learning for daily peak load forecasting
    • M.R. Amin-Naseri, and A.R. Soroush Combined use of unsupervised and supervised learning for daily peak load forecasting Energy Conversion and Management 49 2008 1302 1308
    • (2008) Energy Conversion and Management , vol.49 , pp. 1302-1308
    • Amin-Naseri, M.R.1    Soroush, A.R.2
  • 7
    • 77954087387 scopus 로고    scopus 로고
    • Modeling and optimization of HVAC energy consumption
    • A. Kusiak, M.Y. Li, and F. Tang Modeling and optimization of HVAC energy consumption Applied Energy 87 2010 3092 3102
    • (2010) Applied Energy , vol.87 , pp. 3092-3102
    • Kusiak, A.1    Li, M.Y.2    Tang, F.3
  • 9
    • 77955585423 scopus 로고    scopus 로고
    • A decision tree method for building energy demand modeling
    • Z. Yu, F. Haghighat, C.M. Fung, and H. Yoshino A decision tree method for building energy demand modeling Energy and Buildings 42 2010 1637 1646
    • (2010) Energy and Buildings , vol.42 , pp. 1637-1646
    • Yu, Z.1    Haghighat, F.2    Fung, C.M.3    Yoshino, H.4
  • 10
    • 84857063430 scopus 로고    scopus 로고
    • A novel methodology for knowledge discovery through mining associations between building operational data
    • Z. Yu, F. Haghighat, C.M. Fung, and L. Zhou A novel methodology for knowledge discovery through mining associations between building operational data Energy and Buildings 47 2012 430 440
    • (2012) Energy and Buildings , vol.47 , pp. 430-440
    • Yu, Z.1    Haghighat, F.2    Fung, C.M.3    Zhou, L.4
  • 11
    • 84875856634 scopus 로고    scopus 로고
    • Data association mining for identifying lighting energy waste patterns in educational institutes
    • 10.1016/j.enbuild.2013.02.049
    • D.F.M. Cabrera, and H. Zareipour Data association mining for identifying lighting energy waste patterns in educational institutes Energy and Buildings 2013 10.1016/j.enbuild.2013.02.049
    • (2013) Energy and Buildings
    • Cabrera, D.F.M.1    Zareipour, H.2
  • 15
    • 77649238075 scopus 로고    scopus 로고
    • A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults
    • S.W. Wang, Q. Zhou, and F. Xiao A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults Energy and Buildings 42 2010 477 490
    • (2010) Energy and Buildings , vol.42 , pp. 477-490
    • Wang, S.W.1    Zhou, Q.2    Xiao, F.3
  • 16
    • 77957302403 scopus 로고    scopus 로고
    • Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm
    • Z.J. Ma, and S.W. Wang Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm Applied Energy 88 2011 198 211
    • (2011) Applied Energy , vol.88 , pp. 198-211
    • Ma, Z.J.1    Wang, S.W.2
  • 19
    • 34347228671 scopus 로고    scopus 로고
    • An entropy-weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • L.P. Jing, M.K. Ng, and J.Z. Huang An entropy-weighting k-means algorithm for subspace clustering of high-dimensional sparse data IEEE Transactions on Knowledge and Data Engineering 19 2007 1026 1041
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , pp. 1026-1041
    • Jing, L.P.1    Ng, M.K.2    Huang, J.Z.3
  • 20
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests
    • C. Strobl, J. Malley, and G. Tutz An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests Psychological Methods 14 2009 323 348
    • (2009) Psychological Methods , vol.14 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 22
    • 80755187834 scopus 로고    scopus 로고
    • A fault-tolerant and energy efficient control strategy for primary-secondary chilled water systems in buildings
    • D.C. Gao, S.W. Wang, and Y.J. Sun A fault-tolerant and energy efficient control strategy for primary-secondary chilled water systems in buildings Energy and Buildings 43 2011 3646 3656
    • (2011) Energy and Buildings , vol.43 , pp. 3646-3656
    • Gao, D.C.1    Wang, S.W.2    Sun, Y.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.