메뉴 건너뛰기




Volumn , Issue , 2015, Pages 545-575

Probabilistic modeling in machine learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; CASE BASED REASONING; COMPLEX NETWORKS; DIRECTED GRAPHS; EQUIVALENCE CLASSES; GRAPHIC METHODS; HIDDEN MARKOV MODELS; LEARNING SYSTEMS; MARKOV PROCESSES;

EID: 84944559982     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-662-43505-2     Document Type: Chapter
Times cited : (6)

References (72)
  • 1
  • 2
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt: The perceptron: A probabilistic model for information storage and organization in the brain, Psychol. Rev. 65, 386-408 (1958)
    • (1958) Psychol. Rev , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 3
    • 0002515823 scopus 로고
    • Unsupervised mutual information criterion for elemination of overtraining in supervised mulilayer networks
    • G. Deco, W. Finnoff, H.G. Zimmermann: Unsupervised mutual information criterion for elemination of overtraining in supervised mulilayer networks, Neural Comput. 7, 86-107 (1995)
    • (1995) Neural Comput , vol.7 , pp. 86-107
    • Deco, G.1    Finnoff, W.2    Zimmermann, H.G.3
  • 5
    • 85162037149 scopus 로고    scopus 로고
    • Using deep belief nets to learn covariance kernels for gaussian processes
    • R. Salakhutdinov, G. Hinton: Using deep belief nets to learn covariance kernels for Gaussian processes, Adv. Neural Inf. Process. Syst. 20, 1249-1256 (2008)
    • (2008) Adv. Neural Inf. Process. Syst , vol.20 , pp. 1249-1256
    • Salakhutdinov, R.1    Hinton, G.2
  • 8
    • 77955512537 scopus 로고    scopus 로고
    • A test of independence based on a generalized correlation function
    • M. Rao, S. Seth, J. Xu, Y. Chen, H. Tagare, J.C. Princi-pe: A test of independence based on a generalized correlation function, Signal Process. 91, 15-27 (2011)
    • (2011) Signal Process , vol.91 , pp. 15-27
    • Rao, M.1    Seth, S.2    Xu, J.3    Chen, Y.4    Tagare, H.5    Princi-Pe, J.C.6
  • 9
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, H.S. Seung: Learning the parts of objects by non-negative matrix factorization, Nature 401(6755), 788-791 (1999)
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 13
    • 84885621082 scopus 로고    scopus 로고
    • Relation between plsa and nmf and implications
    • (SIGIR’05) (ACM, New York
    • E. Gaussier, C. Goutte: Relation between plsa and nmf and implications, Proc. 28th Int. ACM Conf. Res. Dev. Inf. Retr. (SIGIR’05) (ACM, New York 2005) pp. 601-602
    • (2005) Proc. 28Th Int. ACM Conf. Res. Dev. Inf. Retr , pp. 601-602
    • Gaussier, E.1    Goutte, C.2
  • 14
    • 0036648194 scopus 로고    scopus 로고
    • Mutual information approach to blind separation of stationary sources
    • D.T. Pham: Mutual information approach to blind separation of stationary sources, IEEE Trans. Inf. Theory 48, 1935-1946 (2002)
    • (2002) IEEE Trans. Inf. Theory , vol.48 , pp. 1935-1946
    • Pham, D.T.1
  • 15
    • 0040673441 scopus 로고    scopus 로고
    • Robust blind source separation by beta divergence
    • M. Minami, S. Eguchi: Robust blind source separation by beta divergence, Neural Comput. 14, 1859-1886 (2002)
    • (2002) Neural Comput , vol.14 , pp. 1859-1886
    • Minami, M.1    Eguchi, S.2
  • 16
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended info-max algorithm for mixed sub-gaussian and super-gaussian sources
    • T.-W. Lee, M. Girolami, T.J. Sejnowski: Independent component analysis using an extended info-max algorithm for mixed sub-Gaussian and super-Gaussian sources, Neural Comput. 11(2), 417-441 (1999)
    • (1999) Neural Comput , vol.11 , Issue.2 , pp. 417-441
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.J.3
  • 17
    • 61849103486 scopus 로고    scopus 로고
    • Sparse coding neural gas: Learning of overcomplete data representations
    • K. Labusch, E. Barth, T. Martinetz: Sparse coding neural gas: Learning of overcomplete data representations, Neuro 72(7-9), 1547-1555 (2009)
    • (2009) Neuro , vol.72 , Issue.7-9 , pp. 1547-1555
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 18
    • 79960337319 scopus 로고    scopus 로고
    • Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization
    • A. Cichocki, S. Cruces, S.-I. Amari: Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization, Entropy 13, 134-170 (2011)
    • (2011) Entropy , vol.13 , pp. 134-170
    • Cichocki, A.1    Cruces, S.2    Amari, S.-I.3
  • 19
    • 54749100076 scopus 로고    scopus 로고
    • Axiomatic characterization of information measures
    • I. Csiszár: Axiomatic characterization of information measures, Entropy 10, 261-273 (2008)
    • (2008) Entropy , vol.10 , pp. 261-273
    • Csiszár, I.1
  • 20
    • 33947426775 scopus 로고    scopus 로고
    • On divergences and informations in statistics and information theory
    • F. Liese, I. Vajda: On divergences and informations in statistics and information theory, IEEE Trans. Inf. Theory 52(10), 4394-4412 (2006)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.10 , pp. 4394-4412
    • Liese, F.1    Vajda, I.2
  • 21
    • 79958244935 scopus 로고    scopus 로고
    • Divergence based vector quantization
    • T. Villmann, S. Haase: Divergence based vector quantization, Neural Comput. 23(5), 1343-1392 (2011)
    • (2011) Neural Comput , vol.23 , Issue.5 , pp. 1343-1392
    • Villmann, T.1    Haase, S.2
  • 22
    • 0020100081 scopus 로고
    • Asymptotic quantization error of continuous signals and the quantization dimension
    • P.L. Zador: Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inf. Theory 28, 149-159 (1982)
    • (1982) IEEE Trans. Inf. Theory , vol.28 , pp. 149-159
    • Zador, P.L.1
  • 23
    • 33644899424 scopus 로고    scopus 로고
    • Magnification control in self-organizing maps and neural gas
    • T. Villmann, J.-C. Claussen: Magnification control in self-organizing maps and neural gas, Neural Com-put. 18(2), 446-469 (2006)
    • (2006) Neural Com-Put , vol.18 , Issue.2 , pp. 446-469
    • Villmann, T.1    Claussen, J.-C.2
  • 24
    • 33847355221 scopus 로고    scopus 로고
    • Magnification control for batch neural gas
    • B. Hammer, A. Hasenfuss, T. Villmann: Magnification control for batch neural gas, Neurocomputing 70(7-9), 1225-1234 (2007)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1225-1234
    • Hammer, B.1    Hasenfuss, A.2    Villmann, T.3
  • 25
    • 34249070931 scopus 로고    scopus 로고
    • Explicit magnifi-cation control of self-organizing maps for “forbidden” data
    • E. Merényi, A. Jain, T. Villmann: Explicit magnifi-cation control of self-organizing maps for “forbidden” data, IEEE Trans. Neural Netw. 18(3), 786-797 (2007)
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.3 , pp. 786-797
    • Merényi, E.1    Jain, A.2    Villmann, T.3
  • 26
    • 80054724538 scopus 로고    scopus 로고
    • Magnification in divergence based neural maps
    • R. Mikkulainen (IEEE, Los Alamitos
    • T. Villmann, S. Haase: Magnification in divergence based neural maps, Proc. Int. Jt. Conf. Artif. Neural Netw. (IJCNN 2011), ed. by R. Mikkulainen (IEEE, Los Alamitos 2011) pp. 437-441
    • (2011) Proc. Int. Jt. Conf. Artif. Neural Netw. (IJCNN 2011) , pp. 437-441
    • Villmann, T.1    Haase, S.2
  • 29
    • 84898948849 scopus 로고    scopus 로고
    • The laplacian pdf distance: A cost function for clustering in a kernel feature space
    • MIT Press, Cambridge
    • R. Jenssen, D. Erdogmus, J.C. Principe, T. Eltoft: The Laplacian PDF distance: A cost function for clustering in a kernel feature space, Adv. Neural Inf. Process. Syst., Vol. 17 (MIT Press, Cambridge 2005) pp. 625-632
    • (2005) Adv. Neural Inf. Process. Syst , vol.17 , pp. 625-632
    • Jenssen, R.1    Erdogmus, D.2    Principe, J.C.3    Eltoft, T.4
  • 31
    • 85032996208 scopus 로고    scopus 로고
    • Stochastic neighbor embedding
    • MIT Press, Cambridge
    • G.E. Hinton, S.T. Roweis: Stochastic neighbor embedding, Adv. Neural Inf. Process. Syst., Vol. 15 (MIT Press, Cambridge 2002) pp. 833-840
    • (2002) Adv. Neural Inf. Process. Syst , vol.15 , pp. 833-840
    • Hinton, G.E.1    Roweis, S.T.2
  • 33
    • 84860235712 scopus 로고    scopus 로고
    • Stochastic neighbor embedding (Sne) for dimension reduction and visualization using arbitrary divergences
    • K. Bunte, S. Haase, M. Biehl, T. Villmann: Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences, Neurocomputing 90(9), 23-45 (2012)
    • (2012) Neurocomputing , vol.90 , Issue.9 , pp. 23-45
    • Bunte, K.1    Haase, S.2    Biehl, M.3    Villmann, T.4
  • 36
    • 69249222802 scopus 로고    scopus 로고
    • Information-theoretic feature selection for functional data classification
    • V. Gómez-Verdejo, M. Verleysen, J. Fleury: Information-theoretic feature selection for functional data classification, Neurocomputing 72(16-18), 3580-3589 (2009)
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3580-3589
    • Gómez-Verdejo, V.1    Verleysen, M.2    Fleury, J.3
  • 37
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • B. Hammer, T. Villmann: Generalized relevance learning vector quantization, Neural Netw. 15(8/9), 1059-1068 (2002)
    • (2002) Neural Netw , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 38
    • 79959316865 scopus 로고    scopus 로고
    • Sparse functional relevance learning in generalized learning vector quantization
    • T. Villmann, M. Kästner: Sparse functional relevance learning in generalized learning vector quantization, Lect. Notes Comput. Sci. 6731, 79-89 (2011)
    • (2011) Lect. Notes Comput. Sci , vol.6731 , pp. 79-89
    • Villmann, T.1    Kästner, M.2
  • 39
    • 84860237512 scopus 로고    scopus 로고
    • Functional relevance learning in generalized learning vector quantization
    • M. Kästner, B. Hammer, M. Biehl, T. Villmann: Functional relevance learning in generalized learning vector quantization, Neurocomputing 90(9), 85-95 (2012)
    • (2012) Neurocomputing , vol.90 , Issue.9 , pp. 85-95
    • Kästner, M.1    Hammer, B.2    Biehl, M.3    Villmann, T.4
  • 41
    • 0001259448 scopus 로고
    • Estimating mutual information by kernel density estimators
    • Y.-I. Moon, B. Rajagopalan, U. Lall: Estimating mutual information by kernel density estimators, Phys. Rev. E 52, 2318-2321 (1995)
    • (1995) Phys. Rev. E , vol.52 , pp. 2318-2321
    • Moon, Y.-I.1    Rajagopalan, B.2    Lall, U.3
  • 43
    • 10944226453 scopus 로고    scopus 로고
    • An information energy lvq approach for feature ranking
    • M. Verleysen (d-side, Evere
    • R. Andonie, A. Cataron: An information energy LVQ approach for feature ranking, Eur. Symp. Artif. Neural Netw. 2004, ed. by M. Verleysen (d-side, Evere 2004) pp. 471-476
    • (2004) Eur. Symp. Artif. Neural Netw. 2004 , pp. 471-476
    • Andonie, R.1    Cataron, A.2
  • 44
    • 33846338472 scopus 로고    scopus 로고
    • Some equivalences between kernel methods and information theoretic methods
    • R. Jenssen, D. Erdogmus, J.C. Principe, T. Eltoft: Some equivalences between kernel methods and information theoretic methods, J. VLSI Signal Process. 45, 49-65 (2006)
    • (2006) J. VLSI Signal Process , vol.45 , pp. 49-65
    • Jenssen, R.1    Erdogmus, D.2    Principe, J.C.3    Eltoft, T.4
  • 46
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • M.I. Jordan: Graphical models, Stat. Sci. 19, 140-155 (2004)
    • (2004) Stat. Sci , vol.19 , pp. 140-155
    • Jordan, M.I.1
  • 48
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A.P. Dempster, N.M. Laird, D.B. Rubin: Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B 39(1), 1-38 (1977)
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 49
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • M.E. Tipping, C.M. Bishop: Probabilistic principal component analysis, J. R. Stat. Soc. Ser. B 61(3), 611- 622 (1999)
    • (1999) J. R. Stat. Soc. Ser. B , vol.61 , Issue.3 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 50
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann: Unsupervised learning by probabilistic latent semantic analysis, Mach. Learn. 42(1/2), 177-196 (2001)
    • (2001) Mach. Learn , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 53
    • 1842751687 scopus 로고    scopus 로고
    • Expectation propagation for the generative aspect model
    • T. Minka, J. Lafferty: Expectation propagation for the generative aspect model, Proc. Conf. Uncertain. AI (2002)
    • (2002) Proc. Conf. Uncertain , Issue.AI
    • Minka, T.1    Lafferty, J.2
  • 55
    • 8644225400 scopus 로고    scopus 로고
    • Hierarchical topic models and the nested chinese restaurant process
    • MIT Press, Cambridge
    • M. Blei, D. Blei, T. Griffiths, J. Tenenbaum: Hierarchical topic models and the nested Chinese restaurant process, Adv. Neural Inf. Process. Syst., Vol. 16 (MIT Press, Cambridge 2004) p. 17
    • (2004) Adv. Neural Inf. Process. Syst , vol.16 , pp. 17
    • Blei, M.1    Blei, D.2    Griffiths, T.3    Tenenbaum, J.4
  • 57
    • 50649103674 scopus 로고    scopus 로고
    • What, where and who? Classifying events by scene and object recognition
    • L.-J. Li, L. Fei-Fei: What, where and who? classifying events by scene and object recognition, IEEE 11th Int. Conf. Comput. Vis. (ICCV) 2007 (2007), pp. 1-8
    • (2007) IEEE 11Th Int. Conf. Comput. Vis. (ICCV) , vol.2007 , pp. 1-8
    • Li, L.-J.1    Fei-Fei, L.2
  • 58
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • L.R. Rabiner: A tutorial on hidden markov models and selected applications in speech recognition, Proc. IEEE 77(2), 257-286 (1989)
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 59
    • 0000342467 scopus 로고
    • Statistical inference for probabilistic functions of finite state markov chains
    • L.E. Baum, T. Petrie: Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Stat. 37(6), 1554-1563 (1966)
    • (1966) Ann. Math. Stat , vol.37 , Issue.6 , pp. 1554-1563
    • Baum, L.E.1    Petrie, T.2
  • 60
    • 0020734214 scopus 로고
    • An introduction to the application of the theory of probabilistic functions of a markov process to automatic speech recognition
    • S.E. Levinson, L.R. Rabiner, M.M. Sondhi: An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition, Bell Syst. Tech. J. 62(4), 1035-1074 (1983)
    • (1983) Bell Syst. Tech. J , vol.62 , Issue.4 , pp. 1035-1074
    • Levinson, S.E.1    Rabiner, L.R.2    Sondhi, M.M.3
  • 61
    • 0022205224 scopus 로고
    • Baum’s forward-backward algorithm revisited
    • P.A. Devijver: Baum’s forward-backward algorithm revisited, Pattern Recogn. Lett. 3(6), 369-373 (1985)
    • (1985) Pattern Recogn. Lett , vol.3 , Issue.6 , pp. 369-373
    • Devijver, P.A.1
  • 62
    • 0030685285 scopus 로고    scopus 로고
    • Coupled hidden markov models for complex action recognition, computer vision and pattern recognition
    • M. Brand, N. Oliver, A. Pentland: Coupled hidden Markov models for complex action recognition, Computer Vision and Pattern Recognition, Proc., 1997 IEEE (1997) pp. 994-999
    • (1997) Proc., 1997 IEEE , pp. 994-999
    • Brand, M.1    Oliver, N.2    Pentland, A.3
  • 63
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden markov models
    • Z. Ghahramani, M.I. Jordan: Factorial hidden Markov models, Mach. Learn. 29(2), 245-273 (1997)
    • (1997) Mach. Learn , vol.29 , Issue.2 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.I.2
  • 64
    • 0030242097 scopus 로고    scopus 로고
    • Input-output hmms for sequence processing
    • Y. Bengio, P. Frasconi: Input-output HMMs for sequence processing, IEEE Trans. Neural Netw. 7(5), 1231-1249 (1996)
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.5 , pp. 1231-1249
    • Bengio, Y.1    Frasconi, P.2
  • 65
    • 33646752807 scopus 로고    scopus 로고
    • Learning dynamic audio-visual mapping with input-output hidden markov models
    • Y. Li, H.Y. Shum: Learning dynamic audio-visual mapping with input-output hidden Markov models, IEEE Trans. Multimed. 8(3), 542-549 (2006)
    • (2006) IEEE Trans. Multimed , vol.8 , Issue.3 , pp. 542-549
    • Li, Y.1    Shum, H.Y.2
  • 66
    • 24744463144 scopus 로고    scopus 로고
    • Model-based clustering with hidden markov models and its application to financial time-series data
    • (Springer, Berlin, Heidelberg
    • B. Knab, A. Schliep, B. Steckemetz, B. Wichern: Model-based clustering with hidden Markov models and its application to financial time-series data, Proc. GfKl 2002 Data Sci. Appl. Data Anal. (Springer, Berlin, Heidelberg 2003) pp. 561-569
    • (2003) Proc. Gfkl 2002 Data Sci. Appl. Data Anal , pp. 561-569
    • Knab, B.1    Schliep, A.2    Steckemetz, B.3    Wichern, B.4
  • 67
    • 79958106048 scopus 로고    scopus 로고
    • Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended hidden markov models
    • M. Seifert, M. Strickert, A. Schliep, I. Grosse: Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended hidden Markov models, Bioinformatics 27(12), 1645-1652 (2011)
    • (2011) Bioinformatics , vol.27 , Issue.12 , pp. 1645-1652
    • Seifert, M.1    Strickert, M.2    Schliep, A.3    Grosse, I.4
  • 69
    • 84876942320 scopus 로고    scopus 로고
    • Compositional generative mapping for tree-structured data - part i: Bottom-up probabilistic modeling of trees
    • D. Bacciu, A. Micheli, A. Sperduti: Compositional generative mapping for tree-structured data - Part I: Bottom-up probabilistic modeling of trees, IEEE Trans. Neural Netw. Learn. Syst. 23(12), 1987-2002 (2012)
    • (2012) IEEE Trans. Neural Netw. Learn. Syst , vol.23 , Issue.12 , pp. 1987-2002
    • Bacciu, D.1    Micheli, A.2    Sperduti, A.3
  • 70
    • 84877628691 scopus 로고    scopus 로고
    • An input-output hidden markov model for tree transductions
    • D. Bacciu, A. Micheli, A. Sperduti: An input-output hidden Markov model for tree transductions, Neu-rocomputing 112, 34-46 (2013)
    • (2013) Neu-Rocomputing , vol.112 , pp. 34-46
    • Bacciu, D.1    Micheli, A.2    Sperduti, A.3
  • 72
    • 33750032384 scopus 로고    scopus 로고
    • An introduction to conditional random fields for relational learning
    • L. Getoor, B. Taskar (MIT Press, Cambridge
    • C. Sutton, A. McCallum: An introduction to conditional random fields for relational learning. In: Introduction to Statistical Relational Learning, ed. by L. Getoor, B. Taskar (MIT Press, Cambridge 2006) pp. 93-128
    • (2006) In: Introduction to Statistical Relational Learning , pp. 93-128
    • Sutton, C.1    McCallum, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.