-
2
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
F. Rosenblatt: The perceptron: A probabilistic model for information storage and organization in the brain, Psychol. Rev. 65, 386-408 (1958)
-
(1958)
Psychol. Rev
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
3
-
-
0002515823
-
Unsupervised mutual information criterion for elemination of overtraining in supervised mulilayer networks
-
G. Deco, W. Finnoff, H.G. Zimmermann: Unsupervised mutual information criterion for elemination of overtraining in supervised mulilayer networks, Neural Comput. 7, 86-107 (1995)
-
(1995)
Neural Comput
, vol.7
, pp. 86-107
-
-
Deco, G.1
Finnoff, W.2
Zimmermann, H.G.3
-
5
-
-
85162037149
-
Using deep belief nets to learn covariance kernels for gaussian processes
-
R. Salakhutdinov, G. Hinton: Using deep belief nets to learn covariance kernels for Gaussian processes, Adv. Neural Inf. Process. Syst. 20, 1249-1256 (2008)
-
(2008)
Adv. Neural Inf. Process. Syst
, vol.20
, pp. 1249-1256
-
-
Salakhutdinov, R.1
Hinton, G.2
-
8
-
-
77955512537
-
A test of independence based on a generalized correlation function
-
M. Rao, S. Seth, J. Xu, Y. Chen, H. Tagare, J.C. Princi-pe: A test of independence based on a generalized correlation function, Signal Process. 91, 15-27 (2011)
-
(2011)
Signal Process
, vol.91
, pp. 15-27
-
-
Rao, M.1
Seth, S.2
Xu, J.3
Chen, Y.4
Tagare, H.5
Princi-Pe, J.C.6
-
9
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D.D. Lee, H.S. Seung: Learning the parts of objects by non-negative matrix factorization, Nature 401(6755), 788-791 (1999)
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
14
-
-
0036648194
-
Mutual information approach to blind separation of stationary sources
-
D.T. Pham: Mutual information approach to blind separation of stationary sources, IEEE Trans. Inf. Theory 48, 1935-1946 (2002)
-
(2002)
IEEE Trans. Inf. Theory
, vol.48
, pp. 1935-1946
-
-
Pham, D.T.1
-
15
-
-
0040673441
-
Robust blind source separation by beta divergence
-
M. Minami, S. Eguchi: Robust blind source separation by beta divergence, Neural Comput. 14, 1859-1886 (2002)
-
(2002)
Neural Comput
, vol.14
, pp. 1859-1886
-
-
Minami, M.1
Eguchi, S.2
-
16
-
-
0033556834
-
Independent component analysis using an extended info-max algorithm for mixed sub-gaussian and super-gaussian sources
-
T.-W. Lee, M. Girolami, T.J. Sejnowski: Independent component analysis using an extended info-max algorithm for mixed sub-Gaussian and super-Gaussian sources, Neural Comput. 11(2), 417-441 (1999)
-
(1999)
Neural Comput
, vol.11
, Issue.2
, pp. 417-441
-
-
Lee, T.-W.1
Girolami, M.2
Sejnowski, T.J.3
-
17
-
-
61849103486
-
Sparse coding neural gas: Learning of overcomplete data representations
-
K. Labusch, E. Barth, T. Martinetz: Sparse coding neural gas: Learning of overcomplete data representations, Neuro 72(7-9), 1547-1555 (2009)
-
(2009)
Neuro
, vol.72
, Issue.7-9
, pp. 1547-1555
-
-
Labusch, K.1
Barth, E.2
Martinetz, T.3
-
18
-
-
79960337319
-
Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization
-
A. Cichocki, S. Cruces, S.-I. Amari: Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization, Entropy 13, 134-170 (2011)
-
(2011)
Entropy
, vol.13
, pp. 134-170
-
-
Cichocki, A.1
Cruces, S.2
Amari, S.-I.3
-
19
-
-
54749100076
-
Axiomatic characterization of information measures
-
I. Csiszár: Axiomatic characterization of information measures, Entropy 10, 261-273 (2008)
-
(2008)
Entropy
, vol.10
, pp. 261-273
-
-
Csiszár, I.1
-
20
-
-
33947426775
-
On divergences and informations in statistics and information theory
-
F. Liese, I. Vajda: On divergences and informations in statistics and information theory, IEEE Trans. Inf. Theory 52(10), 4394-4412 (2006)
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.10
, pp. 4394-4412
-
-
Liese, F.1
Vajda, I.2
-
21
-
-
79958244935
-
Divergence based vector quantization
-
T. Villmann, S. Haase: Divergence based vector quantization, Neural Comput. 23(5), 1343-1392 (2011)
-
(2011)
Neural Comput
, vol.23
, Issue.5
, pp. 1343-1392
-
-
Villmann, T.1
Haase, S.2
-
22
-
-
0020100081
-
Asymptotic quantization error of continuous signals and the quantization dimension
-
P.L. Zador: Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inf. Theory 28, 149-159 (1982)
-
(1982)
IEEE Trans. Inf. Theory
, vol.28
, pp. 149-159
-
-
Zador, P.L.1
-
23
-
-
33644899424
-
Magnification control in self-organizing maps and neural gas
-
T. Villmann, J.-C. Claussen: Magnification control in self-organizing maps and neural gas, Neural Com-put. 18(2), 446-469 (2006)
-
(2006)
Neural Com-Put
, vol.18
, Issue.2
, pp. 446-469
-
-
Villmann, T.1
Claussen, J.-C.2
-
24
-
-
33847355221
-
Magnification control for batch neural gas
-
B. Hammer, A. Hasenfuss, T. Villmann: Magnification control for batch neural gas, Neurocomputing 70(7-9), 1225-1234 (2007)
-
(2007)
Neurocomputing
, vol.70
, Issue.7-9
, pp. 1225-1234
-
-
Hammer, B.1
Hasenfuss, A.2
Villmann, T.3
-
25
-
-
34249070931
-
Explicit magnifi-cation control of self-organizing maps for “forbidden” data
-
E. Merényi, A. Jain, T. Villmann: Explicit magnifi-cation control of self-organizing maps for “forbidden” data, IEEE Trans. Neural Netw. 18(3), 786-797 (2007)
-
(2007)
IEEE Trans. Neural Netw
, vol.18
, Issue.3
, pp. 786-797
-
-
Merényi, E.1
Jain, A.2
Villmann, T.3
-
28
-
-
14844296969
-
Vector quantization using information theoretic concepts
-
T. Lehn-Schiøler, A. Hegde, D. Erdogmus, J.C. Prin-cipe: Vector quantization using information theoretic concepts, Nat. Comput. 4(1), 39-51 (2005)
-
(2005)
Nat. Comput
, vol.4
, Issue.1
, pp. 39-51
-
-
Lehn-Schiøler, T.1
Hegde, A.2
Erdogmus, D.3
Prin-Cipe, J.C.4
-
29
-
-
84898948849
-
The laplacian pdf distance: A cost function for clustering in a kernel feature space
-
MIT Press, Cambridge
-
R. Jenssen, D. Erdogmus, J.C. Principe, T. Eltoft: The Laplacian PDF distance: A cost function for clustering in a kernel feature space, Adv. Neural Inf. Process. Syst., Vol. 17 (MIT Press, Cambridge 2005) pp. 625-632
-
(2005)
Adv. Neural Inf. Process. Syst
, vol.17
, pp. 625-632
-
-
Jenssen, R.1
Erdogmus, D.2
Principe, J.C.3
Eltoft, T.4
-
30
-
-
10944256268
-
Vector quantization by density matching in the minimum kullback-leibler-divergence sense
-
IEEE, New York
-
A. Hegde, D. Erdogmus, T. Lehn-Schiøler, Y.N. Rao, J.C. Principe: Vector quantization by density matching in the minimum Kullback-Leibler-divergence sense, Proc. Int. Jt. Conf. Artif. Neural Netw. (IJCNN), Budapest (IEEE, New York 2004) pp. 105-109
-
(2004)
Proc. Int. Jt. Conf. Artif. Neural Netw. (IJCNN), Budapest
, pp. 105-109
-
-
Hegde, A.1
Erdogmus, D.2
Lehn-Schiøler, T.3
Rao, Y.N.4
Principe, J.C.5
-
31
-
-
85032996208
-
Stochastic neighbor embedding
-
MIT Press, Cambridge
-
G.E. Hinton, S.T. Roweis: Stochastic neighbor embedding, Adv. Neural Inf. Process. Syst., Vol. 15 (MIT Press, Cambridge 2002) pp. 833-840
-
(2002)
Adv. Neural Inf. Process. Syst
, vol.15
, pp. 833-840
-
-
Hinton, G.E.1
Roweis, S.T.2
-
33
-
-
84860235712
-
Stochastic neighbor embedding (Sne) for dimension reduction and visualization using arbitrary divergences
-
K. Bunte, S. Haase, M. Biehl, T. Villmann: Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences, Neurocomputing 90(9), 23-45 (2012)
-
(2012)
Neurocomputing
, vol.90
, Issue.9
, pp. 23-45
-
-
Bunte, K.1
Haase, S.2
Biehl, M.3
Villmann, T.4
-
34
-
-
49049096137
-
Derivatives of pearson correlation for gradient-based analysis of biomedical data
-
M. Strickert, F.-M. Schleif, U. Seiffert, T. Villmann: Derivatives of pearson correlation for gradient-based analysis of biomedical data, Intel. Artif. Rev. Iberoam. Intel. Artif. 37, 37-44 (2008)
-
(2008)
Intel. Artif. Rev. Iberoam. Intel. Artif
, vol.37
, pp. 37-44
-
-
Strickert, M.1
Schleif, F.-M.2
Seiffert, U.3
Villmann, T.4
-
35
-
-
84887127846
-
Multi-spectral image characterization by partial general-ized covariance
-
Louvain-La-Neuve, ed. by M. Verley-sen
-
M. Strickert, B. Labitzke, A. Kolb, T. Villmann: Multi-spectral image characterization by partial general-ized covariance, Proc. Eur. Symp. Artif. Neural Netw. (ESANN’2011), Louvain-La-Neuve, ed. by M. Verley-sen (2011) pp. 105-110
-
(2011)
Proc. Eur. Symp. Artif. Neural Netw. (ESANN’2011)
, pp. 105-110
-
-
Strickert, M.1
Labitzke, B.2
Kolb, A.3
Villmann, T.4
-
36
-
-
69249222802
-
Information-theoretic feature selection for functional data classification
-
V. Gómez-Verdejo, M. Verleysen, J. Fleury: Information-theoretic feature selection for functional data classification, Neurocomputing 72(16-18), 3580-3589 (2009)
-
(2009)
Neurocomputing
, vol.72
, Issue.16-18
, pp. 3580-3589
-
-
Gómez-Verdejo, V.1
Verleysen, M.2
Fleury, J.3
-
37
-
-
0036791938
-
Generalized relevance learning vector quantization
-
B. Hammer, T. Villmann: Generalized relevance learning vector quantization, Neural Netw. 15(8/9), 1059-1068 (2002)
-
(2002)
Neural Netw
, vol.15
, Issue.8-9
, pp. 1059-1068
-
-
Hammer, B.1
Villmann, T.2
-
38
-
-
79959316865
-
Sparse functional relevance learning in generalized learning vector quantization
-
T. Villmann, M. Kästner: Sparse functional relevance learning in generalized learning vector quantization, Lect. Notes Comput. Sci. 6731, 79-89 (2011)
-
(2011)
Lect. Notes Comput. Sci
, vol.6731
, pp. 79-89
-
-
Villmann, T.1
Kästner, M.2
-
39
-
-
84860237512
-
Functional relevance learning in generalized learning vector quantization
-
M. Kästner, B. Hammer, M. Biehl, T. Villmann: Functional relevance learning in generalized learning vector quantization, Neurocomputing 90(9), 85-95 (2012)
-
(2012)
Neurocomputing
, vol.90
, Issue.9
, pp. 85-95
-
-
Kästner, M.1
Hammer, B.2
Biehl, M.3
Villmann, T.4
-
40
-
-
39749164774
-
Estimating mutual information
-
A. Kraskov, H. Stogbauer, P. Grassberger: Estimating mutual information, Phys. Rev. E 69(6), 66-138 (2004)
-
(2004)
Phys. Rev. E
, vol.69
, Issue.6
, pp. 66-138
-
-
Kraskov, A.1
Stogbauer, H.2
Grassberger, P.3
-
41
-
-
0001259448
-
Estimating mutual information by kernel density estimators
-
Y.-I. Moon, B. Rajagopalan, U. Lall: Estimating mutual information by kernel density estimators, Phys. Rev. E 52, 2318-2321 (1995)
-
(1995)
Phys. Rev. E
, vol.52
, pp. 2318-2321
-
-
Moon, Y.-I.1
Rajagopalan, B.2
Lall, U.3
-
43
-
-
10944226453
-
An information energy lvq approach for feature ranking
-
M. Verleysen (d-side, Evere
-
R. Andonie, A. Cataron: An information energy LVQ approach for feature ranking, Eur. Symp. Artif. Neural Netw. 2004, ed. by M. Verleysen (d-side, Evere 2004) pp. 471-476
-
(2004)
Eur. Symp. Artif. Neural Netw. 2004
, pp. 471-476
-
-
Andonie, R.1
Cataron, A.2
-
44
-
-
33846338472
-
Some equivalences between kernel methods and information theoretic methods
-
R. Jenssen, D. Erdogmus, J.C. Principe, T. Eltoft: Some equivalences between kernel methods and information theoretic methods, J. VLSI Signal Process. 45, 49-65 (2006)
-
(2006)
J. VLSI Signal Process
, vol.45
, pp. 49-65
-
-
Jenssen, R.1
Erdogmus, D.2
Principe, J.C.3
Eltoft, T.4
-
45
-
-
70349260138
-
Partial logistic artificial neural network for competing risks regularized with automatic relevance determination
-
P.J.G. Lisboa, T.A. Etchells, I.H. Jarman, C.T.C. Ar-sene, M.S.H. Aung, A. Eleuteri, A.F.G. Taktak, F. Ambrogi, P. Boracchi, E. Biganzoli: Partial logistic artificial neural network for competing risks regularized with automatic relevance determination, IEEE Trans. Neural Netw. 20(9), 1403-1416 (2009)
-
(2009)
IEEE Trans. Neural Netw
, vol.20
, Issue.9
, pp. 1403-1416
-
-
Lisboa, P.1
Etchells, T.A.2
Jarman, I.H.3
Ar-Sene, C.4
Aung, M.5
Eleuteri, A.6
Taktak, A.7
Ambrogi, F.8
Boracchi, P.9
Biganzoli, E.10
-
46
-
-
4043129651
-
Graphical models
-
M.I. Jordan: Graphical models, Stat. Sci. 19, 140-155 (2004)
-
(2004)
Stat. Sci
, vol.19
, pp. 140-155
-
-
Jordan, M.I.1
-
48
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A.P. Dempster, N.M. Laird, D.B. Rubin: Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B 39(1), 1-38 (1977)
-
(1977)
J. R. Stat. Soc. Ser. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
49
-
-
0038959172
-
Probabilistic principal component analysis
-
M.E. Tipping, C.M. Bishop: Probabilistic principal component analysis, J. R. Stat. Soc. Ser. B 61(3), 611- 622 (1999)
-
(1999)
J. R. Stat. Soc. Ser. B
, vol.61
, Issue.3
, pp. 611-622
-
-
Tipping, M.E.1
Bishop, C.M.2
-
50
-
-
0034818212
-
Unsupervised learning by probabilistic latent semantic analysis
-
T. Hofmann: Unsupervised learning by probabilistic latent semantic analysis, Mach. Learn. 42(1/2), 177-196 (2001)
-
(2001)
Mach. Learn
, vol.42
, Issue.1-2
, pp. 177-196
-
-
Hofmann, T.1
-
53
-
-
1842751687
-
Expectation propagation for the generative aspect model
-
T. Minka, J. Lafferty: Expectation propagation for the generative aspect model, Proc. Conf. Uncertain. AI (2002)
-
(2002)
Proc. Conf. Uncertain
, Issue.AI
-
-
Minka, T.1
Lafferty, J.2
-
55
-
-
8644225400
-
Hierarchical topic models and the nested chinese restaurant process
-
MIT Press, Cambridge
-
M. Blei, D. Blei, T. Griffiths, J. Tenenbaum: Hierarchical topic models and the nested Chinese restaurant process, Adv. Neural Inf. Process. Syst., Vol. 16 (MIT Press, Cambridge 2004) p. 17
-
(2004)
Adv. Neural Inf. Process. Syst
, vol.16
, pp. 17
-
-
Blei, M.1
Blei, D.2
Griffiths, T.3
Tenenbaum, J.4
-
56
-
-
33745924500
-
The author-topic model for authors and documents
-
AUAI, Corvallis
-
M. Rosen-Zvi, T. Griffiths, M. Steyvers, P. Smyth: The author-topic model for authors and documents, Proc. 20th Conf. Uncertain. Artif. Intell., UAI ‘04 (AUAI, Corvallis 2004) pp. 487-494
-
(2004)
Proc. 20Th Conf. Uncertain. Artif. Intell., UAI ‘04
, pp. 487-494
-
-
Rosen-Zvi, M.1
Griffiths, T.2
Steyvers, M.3
Smyth, P.4
-
57
-
-
50649103674
-
What, where and who? Classifying events by scene and object recognition
-
L.-J. Li, L. Fei-Fei: What, where and who? classifying events by scene and object recognition, IEEE 11th Int. Conf. Comput. Vis. (ICCV) 2007 (2007), pp. 1-8
-
(2007)
IEEE 11Th Int. Conf. Comput. Vis. (ICCV)
, vol.2007
, pp. 1-8
-
-
Li, L.-J.1
Fei-Fei, L.2
-
58
-
-
0024610919
-
A tutorial on hidden markov models and selected applications in speech recognition
-
L.R. Rabiner: A tutorial on hidden markov models and selected applications in speech recognition, Proc. IEEE 77(2), 257-286 (1989)
-
(1989)
Proc. IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.R.1
-
59
-
-
0000342467
-
Statistical inference for probabilistic functions of finite state markov chains
-
L.E. Baum, T. Petrie: Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Stat. 37(6), 1554-1563 (1966)
-
(1966)
Ann. Math. Stat
, vol.37
, Issue.6
, pp. 1554-1563
-
-
Baum, L.E.1
Petrie, T.2
-
60
-
-
0020734214
-
An introduction to the application of the theory of probabilistic functions of a markov process to automatic speech recognition
-
S.E. Levinson, L.R. Rabiner, M.M. Sondhi: An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition, Bell Syst. Tech. J. 62(4), 1035-1074 (1983)
-
(1983)
Bell Syst. Tech. J
, vol.62
, Issue.4
, pp. 1035-1074
-
-
Levinson, S.E.1
Rabiner, L.R.2
Sondhi, M.M.3
-
61
-
-
0022205224
-
Baum’s forward-backward algorithm revisited
-
P.A. Devijver: Baum’s forward-backward algorithm revisited, Pattern Recogn. Lett. 3(6), 369-373 (1985)
-
(1985)
Pattern Recogn. Lett
, vol.3
, Issue.6
, pp. 369-373
-
-
Devijver, P.A.1
-
62
-
-
0030685285
-
Coupled hidden markov models for complex action recognition, computer vision and pattern recognition
-
M. Brand, N. Oliver, A. Pentland: Coupled hidden Markov models for complex action recognition, Computer Vision and Pattern Recognition, Proc., 1997 IEEE (1997) pp. 994-999
-
(1997)
Proc., 1997 IEEE
, pp. 994-999
-
-
Brand, M.1
Oliver, N.2
Pentland, A.3
-
63
-
-
0031268341
-
Factorial hidden markov models
-
Z. Ghahramani, M.I. Jordan: Factorial hidden Markov models, Mach. Learn. 29(2), 245-273 (1997)
-
(1997)
Mach. Learn
, vol.29
, Issue.2
, pp. 245-273
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
64
-
-
0030242097
-
Input-output hmms for sequence processing
-
Y. Bengio, P. Frasconi: Input-output HMMs for sequence processing, IEEE Trans. Neural Netw. 7(5), 1231-1249 (1996)
-
(1996)
IEEE Trans. Neural Netw
, vol.7
, Issue.5
, pp. 1231-1249
-
-
Bengio, Y.1
Frasconi, P.2
-
65
-
-
33646752807
-
Learning dynamic audio-visual mapping with input-output hidden markov models
-
Y. Li, H.Y. Shum: Learning dynamic audio-visual mapping with input-output hidden Markov models, IEEE Trans. Multimed. 8(3), 542-549 (2006)
-
(2006)
IEEE Trans. Multimed
, vol.8
, Issue.3
, pp. 542-549
-
-
Li, Y.1
Shum, H.Y.2
-
66
-
-
24744463144
-
Model-based clustering with hidden markov models and its application to financial time-series data
-
(Springer, Berlin, Heidelberg
-
B. Knab, A. Schliep, B. Steckemetz, B. Wichern: Model-based clustering with hidden Markov models and its application to financial time-series data, Proc. GfKl 2002 Data Sci. Appl. Data Anal. (Springer, Berlin, Heidelberg 2003) pp. 561-569
-
(2003)
Proc. Gfkl 2002 Data Sci. Appl. Data Anal
, pp. 561-569
-
-
Knab, B.1
Schliep, A.2
Steckemetz, B.3
Wichern, B.4
-
67
-
-
79958106048
-
Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended hidden markov models
-
M. Seifert, M. Strickert, A. Schliep, I. Grosse: Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended hidden Markov models, Bioinformatics 27(12), 1645-1652 (2011)
-
(2011)
Bioinformatics
, vol.27
, Issue.12
, pp. 1645-1652
-
-
Seifert, M.1
Strickert, M.2
Schliep, A.3
Grosse, I.4
-
68
-
-
0037624843
-
Hidden tree markov models for document image classification
-
M. Diligenti, P. Frasconi, M. Gori: Hidden tree markov models for document image classification, IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 519-523 (2003)
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.25
, Issue.4
, pp. 519-523
-
-
Diligenti, M.1
Frasconi, P.2
Gori, M.3
-
69
-
-
84876942320
-
Compositional generative mapping for tree-structured data - part i: Bottom-up probabilistic modeling of trees
-
D. Bacciu, A. Micheli, A. Sperduti: Compositional generative mapping for tree-structured data - Part I: Bottom-up probabilistic modeling of trees, IEEE Trans. Neural Netw. Learn. Syst. 23(12), 1987-2002 (2012)
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst
, vol.23
, Issue.12
, pp. 1987-2002
-
-
Bacciu, D.1
Micheli, A.2
Sperduti, A.3
-
70
-
-
84877628691
-
An input-output hidden markov model for tree transductions
-
D. Bacciu, A. Micheli, A. Sperduti: An input-output hidden Markov model for tree transductions, Neu-rocomputing 112, 34-46 (2013)
-
(2013)
Neu-Rocomputing
, vol.112
, pp. 34-46
-
-
Bacciu, D.1
Micheli, A.2
Sperduti, A.3
-
72
-
-
33750032384
-
An introduction to conditional random fields for relational learning
-
L. Getoor, B. Taskar (MIT Press, Cambridge
-
C. Sutton, A. McCallum: An introduction to conditional random fields for relational learning. In: Introduction to Statistical Relational Learning, ed. by L. Getoor, B. Taskar (MIT Press, Cambridge 2006) pp. 93-128
-
(2006)
In: Introduction to Statistical Relational Learning
, pp. 93-128
-
-
Sutton, C.1
McCallum, A.2
|