메뉴 건너뛰기




Volumn 7, Issue 5, 1996, Pages 1231-1249

Input-output HMM's for sequence processing

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE SYSTEMS; ALGORITHMS; COMPUTATIONAL GRAMMARS; DATA PROCESSING; ESTIMATION; LEARNING SYSTEMS; MARKOV PROCESSES; MATHEMATICAL MODELS; PROBLEM SOLVING; STATE SPACE METHODS; STATISTICAL METHODS;

EID: 0030242097     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.536317     Document Type: Article
Times cited : (215)

References (61)
  • 2
    • 0026685375 scopus 로고
    • A structure by which a recurrent neural network can approximate a nonlinear dynamic system
    • July
    • D. Seidl and D. Lorenz, "A structure by which a recurrent neural network can approximate a nonlinear dynamic system," in Proc. Int. Joint Conf. Neural Networks, vol. 2, July 1991 pp. 709-714.
    • (1991) Proc. Int. Joint Conf. Neural Networks , vol.2 , pp. 709-714
    • Seidl, D.1    Lorenz, D.2
  • 4
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart and J. L. McClelland, Eds., ch. 8. Cambridge, MA: MIT Press
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," in Parallel Distributed Processing, D. E. Rumelhart and J. L. McClelland, Eds., vol. 1, ch. 8. Cambridge, MA: MIT Press, 1986, pp. 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 5
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • B. A. Pearlmutter, "Learning state space trajectories in recurrent neural networks," Neural Computa., vol. 1, pp. 263-269, 1989.
    • (1989) Neural Computa. , vol.1 , pp. 263-269
    • Pearlmutter, B.A.1
  • 7
    • 0005803728 scopus 로고
    • Static and dynamic error propagation networks with application to speech coding
    • D. Z. Anderson, Ed. New York: Amer. Inst. Physics
    • A. J. Robinson and F. Fallside, "Static and dynamic error propagation networks with application to speech coding," in Neural Information Processing Systems, D. Z. Anderson, Ed. New York: Amer. Inst. Physics, 1988, pp. 632-641.
    • (1988) Neural Information Processing Systems , pp. 632-641
    • Robinson, A.J.1    Fallside, F.2
  • 8
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Computa., vol. 1, pp. 270-280, 1989.
    • (1989) Neural Computa. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 9
    • 0024903887 scopus 로고
    • BPS: A learning algorithm for capturing the dynamical nature of speech
    • Washington, D.C.
    • M. Gori, Y. Bengio, and R. De Mori, "BPS: A learning algorithm for capturing the dynamical nature of speech," in Proc. Int. Joint Conf. Neural Networks, Washington, D.C., 1989, pp. 643-644.
    • (1989) Proc. Int. Joint Conf. Neural Networks , pp. 643-644
    • Gori, M.1    Bengio, Y.2    De Mori, R.3
  • 10
    • 0008554931 scopus 로고
    • A focused backpropagation algorithm for temporal pattern recognition
    • M. C. Mozer, "A focused backpropagation algorithm for temporal pattern recognition." Complex Syst., vol. 3, pp. 349-381, 1989.
    • (1989) Complex Syst. , vol.3 , pp. 349-381
    • Mozer, M.C.1
  • 11
    • 0001657855 scopus 로고
    • Local feedback multilayered networks
    • P. Frasconi, M. Gori, and G. Soda, "Local feedback multilayered networks," Neural Computa., vol. 4, no. 1, pp. 120-130, 1992.
    • (1992) Neural Computa. , vol.4 , Issue.1 , pp. 120-130
    • Frasconi, P.1    Gori, M.2    Soda, G.3
  • 12
    • 0028392406 scopus 로고
    • Locally recurrent globally feedforward networks, a critical review of architectures
    • A. Tsoi and A. Back, "Locally recurrent globally feedforward networks, a critical review of architectures," IEEE Trans. Neural Networks, vol. 5, pp. 229-239, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 229-239
    • Tsoi, A.1    Back, A.2
  • 13
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Networks, vol. 5, pp. 157-166, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 14
    • 0005316958 scopus 로고
    • The induction of multiscale temporal structure
    • J. Moody, S. Hanson, and R. Lipmann, Eds. San Mateo, CA: Morgan Kaufmann
    • M. C. Mozer, "The induction of multiscale temporal structure," in Advances in Neural Information Processing Systems 4, J. Moody, S. Hanson, and R. Lipmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 275-282.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 275-282
    • Mozer, M.C.1
  • 15
    • 33747663067 scopus 로고
    • The time dimension of neural-network models
    • July
    • R. Rohwer, "The time dimension of neural-network models," ACM Sigart Bulleting, vol. 5, pp. 36-44, July 1994.
    • (1994) ACM Sigart Bulleting , vol.5 , pp. 36-44
    • Rohwer, R.1
  • 16
    • 84943223999 scopus 로고
    • The problem of learning long-term dependencies in recurrent networks
    • San Francisco, CA, invited paper
    • Y. Bengio, P. Frasconi, and P. Simard, "The problem of learning long-term dependencies in recurrent networks," in Proc. IEEE Int. Conf. Neural Networks, San Francisco, CA, 1993, pp. 1183-1195 (invited paper).
    • (1993) Proc. IEEE Int. Conf. Neural Networks , pp. 1183-1195
    • Bengio, Y.1    Frasconi, P.2    Simard, P.3
  • 17
    • 0004663635 scopus 로고
    • The 'moving targets' training algorithm
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • R. Rohwer, "The 'moving targets' training algorithm," in Advances in Neural Information Processing Systems, vol. 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 558-565.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 558-565
    • Rohwer, R.1
  • 18
    • 0000971250 scopus 로고
    • Credit assignment through time: Alternatives to backpropagation
    • J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann
    • Y. Bengio and P. Frasconi, "Credit assignment through time: Alternatives to backpropagation," in Advances in Neural Information Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994.
    • (1994) Advances in Neural Information Processing Systems 6
    • Bengio, Y.1    Frasconi, P.2
  • 19
    • 0002629270 scopus 로고
    • Maximum-likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum-likelihood from incomplete data via the EM algorithm," J. Roy. Statist. Soc. B, vol. 39, pp. 1-38, 1977.
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 20
    • 0000353178 scopus 로고
    • A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains
    • L. E. Baum, T. Petrie, G. Soules, and M. Weiss, "A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains," Ann. Math. Statist., vol. 41, pp. 164-171, 1970.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, M.4
  • 21
    • 0020734214 scopus 로고
    • An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition
    • S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, "An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition," Bell Syst. Tech. J., vol. 64, no. 4, pp. 1035-1074, 1983.
    • (1983) Bell Syst. Tech. J. , vol.64 , Issue.4 , pp. 1035-1074
    • Levinson, S.E.1    Rabiner, L.R.2    Sondhi, M.M.3
  • 23
    • 33747637286 scopus 로고
    • Discriminant learning with minimum memory loss for improved nonvocabulary rejection
    • Madrid, Spain
    • H. Leprieur and P. Haffner, "Discriminant learning with minimum memory loss for improved nonvocabulary rejection," in Proc. EUROSPEECH'95, Madrid, Spain, 1995.
    • (1995) Proc. EUROSPEECH'95
    • Leprieur, H.1    Haffner, P.2
  • 24
    • 0001263162 scopus 로고
    • Globally trained handwritten word recognizer using spatial representation, space displacement neural networks and hidden Markov models
    • J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann
    • Y. Bengio, Y. LeCun, and D. Henderson, "Globally trained handwritten word recognizer using spatial representation, space displacement neural networks and hidden Markov models," in Advances in Neural Information Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994, pp. 937-944.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 937-944
    • Bengio, Y.1    LeCun, Y.2    Henderson, D.3
  • 27
    • 0001119510 scopus 로고
    • Mixtures of controllers for jump linear and nonlinear plants
    • J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann
    • T. W. Cacciatore and S. J. Nowlan, "Mixtures of controllers for jump linear and nonlinear plants," in Advances in Neural Information Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994.
    • (1994) Advances in Neural Information Processing Systems 6
    • Cacciatore, T.W.1    Nowlan, S.J.2
  • 29
    • 0025547193 scopus 로고
    • Links between hidden Markov models and multilayer perceptions
    • H. Bourlard and C. Wellekens, "Links between hidden Markov models and multilayer perceptions," IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 1167-1178, 1990.
    • (1990) IEEE Trans. Pattern Anal. Machine Intell. , vol.12 , pp. 1167-1178
    • Bourlard, H.1    Wellekens, C.2
  • 31
    • 0026835134 scopus 로고
    • Global optimization of a neural network-hidden Markov model hybrid
    • Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, "Global optimization of a neural network-hidden Markov model hybrid," IEEE Trans. Neural Networks, vol. 3, pp. 252-259, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 252-259
    • Bengio, Y.1    De Mori, R.2    Flammia, G.3    Kompe, R.4
  • 33
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • F. Fogelman-Soulie and J. Hérault, Eds. New York: Springer-Verlag
    • J. Bridle, "Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition," in Neuro-Computing: Algorithms, Architectures, and Applications, F. Fogelman-Soulie and J. Hérault, Eds. New York: Springer-Verlag, 1989.
    • (1989) Neuro-Computing: Algorithms, Architectures, and Applications
    • Bridle, J.1
  • 35
    • 0001699291 scopus 로고
    • Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters
    • D. S. Touretzky, Ed. San Mateo. CA: Morgan Kaufmann
    • J. S. Bridle, "Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters," in Advances in Neural Information Processing Systems, vol. 2, D. S. Touretzky, Ed. San Mateo. CA: Morgan Kaufmann, 1989, pp. 211-217.
    • (1989) Advances in Neural Information Processing Systems , vol.2 , pp. 211-217
    • Bridle, J.S.1
  • 36
    • 0001588636 scopus 로고
    • Smooth on-line learning algorithms for hidden Markov models
    • P. Baldi and Y. Chauvin, "Smooth on-line learning algorithms for hidden Markov models," Neural Computa., vol. 6, no. 4, pp. 307-318, 1994.
    • (1994) Neural Computa. , vol.6 , Issue.4 , pp. 307-318
    • Baldi, P.1    Chauvin, Y.2
  • 37
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," Proc. IEEE, vol. 77, no. 2, pp. 257-286, 1989.
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 39
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 40
    • 84947459398 scopus 로고
    • Inserting rules into recurrent neural networks
    • S. Y. Kung, Fallside, F. Sorenson, and J. A. Kamm, Eds.
    • C. L. Giles and C. W. Omlin, "Inserting rules into recurrent neural networks," in Neural Networks for Signal Processing II, S. Y. Kung, Fallside, F. Sorenson, and J. A. Kamm, Eds., 1992, pp. 13-22.
    • (1992) Neural Networks for Signal Processing II , pp. 13-22
    • Giles, C.L.1    Omlin, C.W.2
  • 41
    • 0025547722 scopus 로고
    • Recurrent neural networks, hidden Markov models and stochastic grammars
    • San Diego, CA
    • G. Z. Sun, H. H. Chen, Y. C. Lee, and C. L. Giles, "Recurrent neural networks, hidden Markov models and stochastic grammars," in Proc. Int. Joint Conf. Neural Networks, vol. I, San Diego, CA, 1990, pp. 729-734.
    • (1990) Proc. Int. Joint Conf. Neural Networks , vol.1 , pp. 729-734
    • Sun, G.Z.1    Chen, H.H.2    Lee, Y.C.3    Giles, C.L.4
  • 42
    • 0001632132 scopus 로고
    • Hierarchies of adaptive experts
    • J. Moody, S. Hanson, and R. Lipmann, Eds. San Mateo, CA: Morgan Kaufmann
    • M. I. Jordan and R. A. Jacobs, "Hierarchies of adaptive experts," in Advances in Neural Information Processing Systems 4, J. Moody, S. Hanson, and R. Lipmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 985-992.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 985-992
    • Jordan, M.I.1    Jacobs, R.A.2
  • 43
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, "Finding structure in time," Cognitive Sci., vol. 14, pp. 179-211, 1990.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 44
    • 4544291266 scopus 로고
    • Diffusion of context and credit information in Markovian models
    • Online
    • Y. Bengio and P. Frasconi, "Diffusion of context and credit information in Markovian models," J. Artificial Intell. Res., vol. 3, pp. 249-270, 1995. [Online] Available gopher://p.gp.cs.cmu.edu/00/volume3/bengio95a.ps.Z.
    • (1995) J. Artificial Intell. Res. , vol.3 , pp. 249-270
    • Bengio, Y.1    Frasconi, P.2
  • 46
    • 0001011612 scopus 로고
    • Learning from hints in neural networks
    • Y. S. Abu-Mostafa, "Learning from hints in neural networks," J. Complexity, vol. 6, pp. 192-198, 1990.
    • (1990) J. Complexity , vol.6 , pp. 192-198
    • Abu-Mostafa, Y.S.1
  • 47
    • 85158010005 scopus 로고
    • Refinement of approximate domain theories by knowledge-based neural networks
    • Boston, MA
    • G. G. Towell, J. W. Shavlik, and M. O. Noordewier, "Refinement of approximate domain theories by knowledge-based neural networks," in Proc. 8th Nat. Conf. Artificial Intell., Boston, MA, 1990, pp. 861-866.
    • (1990) Proc. 8th Nat. Conf. Artificial Intell. , pp. 861-866
    • Towell, G.G.1    Shavlik, J.W.2    Noordewier, M.O.3
  • 48
    • 0002475925 scopus 로고
    • Network structuring and training using rule-based knowledge
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufman
    • V. Tresp, J. Hollatz, and S. Ahmad, "Network structuring and training using rule-based knowledge," in Advances in Neural Information Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufman, 1993.
    • (1993) Advances in Neural Information Processing Systems 5
    • Tresp, V.1    Hollatz, J.2    Ahmad, S.3
  • 49
    • 84919251838 scopus 로고
    • Training second-order recurrent neural networks using hints
    • D. Sleeman and P. Edwards, Eds. San Mateo, CA: Morgan Kaufmann
    • C. W. Omlin and C. L. Giles, "Training second-order recurrent neural networks using hints," in Machine Learning: Proc. 9th Int. Conf. Artificial Intell, D. Sleeman and P. Edwards, Eds. San Mateo, CA: Morgan Kaufmann, 1992.
    • (1992) Machine Learning: Proc. 9th Int. Conf. Artificial Intell
    • Omlin, C.W.1    Giles, C.L.2
  • 50
    • 33747943914 scopus 로고
    • Refining domain theories expressed as finite-state automata
    • L. Birnbaum and G. Collins, Eds. San Mateo, CA: Morgan Kaufmann
    • R. Maclin and J. W. Shavlik, "Refining domain theories expressed as finite-state automata," in Machine Learning: Proc. 8th Int. Wkshp., L. Birnbaum and G. Collins, Eds. San Mateo, CA: Morgan Kaufmann, 1991.
    • (1991) Machine Learning: Proc. 8th Int. Wkshp.
    • Maclin, R.1    Shavlik, J.W.2
  • 51
    • 0029291395 scopus 로고
    • Unified integration of explicit rules and learning by example in recurrent networks
    • P. Frasconi, M. Gori, M. Maggini, and G. Soda, "Unified integration of explicit rules and learning by example in recurrent networks," IEEE Trans. Knowledge Data Eng., vol. 7, pp. 340-346, 1995.
    • (1995) IEEE Trans. Knowledge Data Eng. , vol.7 , pp. 340-346
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 52
    • 33747672173 scopus 로고
    • Continuous speech recognition via centisecond acoustic states
    • Apr.
    • R. Bakis, "Continuous speech recognition via centisecond acoustic states," in Proc. 19th Mtg. Acoust. Soc. Amer., Apr. 1976.
    • (1976) Proc. 19th Mtg. Acoust. Soc. Amer.
    • Bakis, R.1
  • 53
    • 0002906163 scopus 로고
    • Improving the convergence of backpropagation learning with second-order methods
    • D. Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann
    • S. Becker and Y. L. Cun, "Improving the convergence of backpropagation learning with second-order methods," in Proc. 1988 Connectionist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann, 1989, pp. 29-37.
    • (1989) Proc. 1988 Connectionist Models Summer School , pp. 29-37
    • Becker, S.1    Cun, Y.L.2
  • 54
    • 0020815483 scopus 로고
    • Inductive inference: Theory and methods
    • D. Angluin and C. Smith, "Inductive inference: Theory and methods," Computing Surveys, vol. 15, no. 3. pp. 237-269, 1983.
    • (1983) Computing Surveys , vol.15 , Issue.3 , pp. 237-269
    • Angluin, D.1    Smith, C.2
  • 55
    • 0001327717 scopus 로고
    • Learning and extracted finite state automata with second-order recurrent neural networks
    • C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee, "Learning and extracted finite state automata with second-order recurrent neural networks," Neural Computa., vol. 4, no. 3, pp. 393-405, 1992.
    • (1992) Neural Computa. , vol.4 , Issue.3 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 56
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • J. B. Pollack, "The induction of dynamical recognizers," Machine Learning, vol. 7, no. 2, pp. 196-227, 1991.
    • (1991) Machine Learning , vol.7 , Issue.2 , pp. 196-227
    • Pollack, J.B.1
  • 57
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • R. L. Watrous and G. M. Kuhn, "Induction of finite-state languages using second-order recurrent networks," Neural Computa., vol. 4, no. 3, pp. 406-414, 1992.
    • (1992) Neural Computa. , vol.4 , Issue.3 , pp. 406-414
    • Watrous, R.L.1    Kuhn, G.M.2
  • 58
    • 0030125824 scopus 로고    scopus 로고
    • Representation of finite state automata into recurrent radial basis function networks
    • P. Frasconi, M. Gori, M. Maggini, and G. Soda, "Representation of finite state automata into recurrent radial basis function networks," Machine Learning, vol. 23, pp. 5-32, 1996.
    • (1996) Machine Learning , vol.23 , pp. 5-32
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 59
    • 0003130308 scopus 로고
    • A unified gradient-descent/clustering architecture for finite state machine induction
    • J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann
    • S. Das and M. C. Mozer, "A unified gradient-descent/clustering architecture for finite state machine induction," in Advances in Neural Information Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994.
    • (1994) Advances in Neural Information Processing Systems 6
    • Das, S.1    Mozer, M.C.2
  • 60
    • 0001770758 scopus 로고
    • Dynamic construction of finite-state automata from examples using hill-climbing
    • Ann Arbor, MI
    • M. Tomita, "Dynamic construction of finite-state automata from examples using hill-climbing," in Proc. 4th Annu. Cognitive Sci. Conf., Ann Arbor, MI, 1982, pp. 105-108.
    • (1982) Proc. 4th Annu. Cognitive Sci. Conf. , pp. 105-108
    • Tomita, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.