메뉴 건너뛰기




Volumn 45, Issue 1-2, 2006, Pages 49-65

Some equivalences between kernel methods and information theoretic methods

Author keywords

Information theoretic methods; Mercel kernel methods; Parzen window

Indexed keywords

COSTS; LEARNING SYSTEMS; PARAMETER ESTIMATION; STATISTICAL METHODS;

EID: 33846338472     PISSN: 13875485     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11265-006-9771-8     Document Type: Conference Paper
Times cited : (28)

References (46)
  • 3
    • 85032751903 scopus 로고    scopus 로고
    • Kernel Methods and Their Potential Use in Signal Processing
    • May
    • F. Perez-Cruz and O. Bousquet, "Kernel Methods and Their Potential Use in Signal Processing," IEEE Signal Process. Mag., 2004, pp. 57-65, May.
    • (2004) IEEE Signal Process. Mag , pp. 57-65
    • Perez-Cruz, F.1    Bousquet, O.2
  • 5
    • 34249753618 scopus 로고
    • Support Vector Networks
    • C. Cortes and V.N. Vapnik, "Support Vector Networks," Mach. Learn., vol. 20, 1995, pp. 273-297.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • C.J.C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition," Knowledge Discovery and Data Mining, vol. 2, no. 2, 1998, pp. 121-167.
    • (1998) Knowledge Discovery and Data Mining , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 84925605946 scopus 로고    scopus 로고
    • The Entire Regularization Path for the Support Vector Machine
    • T. Hastie, S. Rosset, R. Tibshirani and J. Zhu, "The Entire Regularization Path for the Support Vector Machine," J. Mach. Learn. Res., vol. 5, 2004, pp. 1391-1415.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 10
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Schölkopf, A.J. Smola and K.R. Müller, "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Comput., vol. 10, 1998, pp. 1299-1319.
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 15
    • 85037798019 scopus 로고    scopus 로고
    • Engineering Support Vector Machine Kernels that Recognize Translation Invariant Sites in DNA
    • A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer and K.R. Müller, "Engineering Support Vector Machine Kernels that Recognize Translation Invariant Sites in DNA," Bioinformatics, vol. 16, 2000, pp. 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Zien, A.1    Rätsch, G.2    Mika, S.3    Schölkopf, B.4    Lengauer, T.5    Müller, K.R.6
  • 16
    • 0000986833 scopus 로고    scopus 로고
    • Information Theoretic Learning
    • S. Haykin Ed, Wiley, New York, Chapter 7
    • J. Principe, D. Xu and J. Fisher, "Information Theoretic Learning," in Unsupervised Adaptive Filtering, S. Haykin (Ed.), Wiley, New York, 2000, vol. I, Chapter 7.
    • (2000) Unsupervised Adaptive Filtering , vol.1
    • Principe, J.1    Xu, D.2    Fisher, J.3
  • 17
    • 0034245254 scopus 로고    scopus 로고
    • Learning From Examples with Information Theoretic Criteria
    • J.C. Principe, D. Xu, Q. Zhao and J.W. Fisher, "Learning From Examples with Information Theoretic Criteria," J. VLSI Signal Process., vol. 26, no. 1, 2000, pp. 61-77.
    • (2000) J. VLSI Signal Process , vol.26 , Issue.1 , pp. 61-77
    • Principe, J.C.1    Xu, D.2    Zhao, Q.3    Fisher, J.W.4
  • 18
    • 44849105092 scopus 로고    scopus 로고
    • Unsupervised Adaptive Filtering
    • S. Haykin, Ed, Wiley, New York
    • S. Haykin, (Ed.), "Unsupervised Adaptive Filtering: Volume 1, Blind Source Separation, Wiley, New York, 2000.
    • (2000) Blind Source Separation , vol.1
  • 19
    • 0001473437 scopus 로고
    • On the Estimation of a Probability Density Function and the Mode
    • E. Parzen, "On the Estimation of a Probability Density Function and the Mode," Ann. Math. Stat., vol. 32, 1962, pp. 1065-1076.
    • (1962) Ann. Math. Stat , vol.32 , pp. 1065-1076
    • Parzen, E.1
  • 20
    • 38249024117 scopus 로고
    • On Random Variate Generation when only Moments or Fourier Coefficients are known
    • L. Devroye, "On Random Variate Generation when only Moments or Fourier Coefficients are known," Math. Comput. Simul., vol. 31, 1989, pp. 71-89.
    • (1989) Math. Comput. Simul , vol.31 , pp. 71-89
    • Devroye, L.1
  • 25
    • 0031221119 scopus 로고    scopus 로고
    • Alignment by Maximization of Mutual Information
    • P. Viola and W.M. Wells, "Alignment by Maximization of Mutual Information," Int. J. Comput. Vis., vol. 24, no. 2, 1997, pp. 137-154.
    • (1997) Int. J. Comput. Vis , vol.24 , Issue.2 , pp. 137-154
    • Viola, P.1    Wells, W.M.2
  • 30
    • 2442463272 scopus 로고    scopus 로고
    • Minimax Mutual Information Approach for Independent Component Analysis
    • D. Erdogmus, K.E. Hild, Y.N. Rao and J.C. Principe, "Minimax Mutual Information Approach for Independent Component Analysis," Neural Comput., vol. 16, 2004, pp. 1235-1252.
    • (2004) Neural Comput , vol.16 , pp. 1235-1252
    • Erdogmus, D.1    Hild, K.E.2    Rao, Y.N.3    Principe, J.C.4
  • 31
    • 2942592838 scopus 로고    scopus 로고
    • Adaptive Blind Deconvolution of Linear Channels using Renyi's Entropy with Parzen Window Estimation
    • D. Erdogmus, K.E. Hild, J.C. Principe, M. Lazaro and I. Santamaria, "Adaptive Blind Deconvolution of Linear Channels using Renyi's Entropy with Parzen Window Estimation," IEEE Trans. Signal Process., vol. 52, no. 6, 2004, pp. 1489-1498.
    • (2004) IEEE Trans. Signal Process , vol.52 , Issue.6 , pp. 1489-1498
    • Erdogmus, D.1    Hild, K.E.2    Principe, J.C.3    Lazaro, M.4    Santamaria, I.5
  • 32
    • 0038538359 scopus 로고    scopus 로고
    • Convergence Properties and Data Efficiency of the Minimum Error-Entropy Criterion in Adaline Training
    • D. Erdogmus and J.C. Principe, "Convergence Properties and Data Efficiency of the Minimum Error-Entropy Criterion in Adaline Training," IEEE Trans. Signal Process., vol. 51, no. 7, 2003, pp. 1966-1978.
    • (2003) IEEE Trans. Signal Process , vol.51 , Issue.7 , pp. 1966-1978
    • Erdogmus, D.1    Principe, J.C.2
  • 33
    • 0036947450 scopus 로고    scopus 로고
    • Blind Source Separation using Renyi's α-Marginal Entropies
    • D. Erdogmus, K.E. Hild and J.C. Principe, "Blind Source Separation using Renyi's α-Marginal Entropies," Neurocomputing, vol. 49, 2002, pp. 25-38.
    • (2002) Neurocomputing , vol.49 , pp. 25-38
    • Erdogmus, D.1    Hild, K.E.2    Principe, J.C.3
  • 34
    • 0036571074 scopus 로고    scopus 로고
    • Entropy Minimization for Supervised Digital Communications Channel Equalization
    • I. Santamaria, D. Erdogmus and J.C. Principe, "Entropy Minimization for Supervised Digital Communications Channel Equalization," IEEE Trans. Signal Process., vol. 50, no. 5, 2002, pp. 1184-1192.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.5 , pp. 1184-1192
    • Santamaria, I.1    Erdogmus, D.2    Principe, J.C.3
  • 35
    • 0036737108 scopus 로고    scopus 로고
    • Generalized Information Potential Criterion for Adaptive System Training
    • D. Erdogmus and J.C. Principe, "Generalized Information Potential Criterion for Adaptive System Training," IEEE Trans. Neural Netw., vol. 13, no. 5, 2002, pp. 1035-1044.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1035-1044
    • Erdogmus, D.1    Principe, J.C.2
  • 36
    • 0036647905 scopus 로고    scopus 로고
    • An Error-Entropy Minimization Algorithm for Supervised Training of Nonlinear Adaptive Systems
    • D. Erdogmus and J.C. Principe, "An Error-Entropy Minimization Algorithm for Supervised Training of Nonlinear Adaptive Systems," IEEE Trans. Signal Process., vol. 50, no. 7, 2002, pp. 1780-1786.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.7 , pp. 1780-1786
    • Erdogmus, D.1    Principe, J.C.2
  • 37
    • 0001500115 scopus 로고
    • Functions of Positive and Negative Type and their Connection with the Theory of Integral Equations
    • J. Mercer, "Functions of Positive and Negative Type and their Connection with the Theory of Integral Equations," Philos. Trans. Roy. Soc. London, vol. A, 1909, pp. 415-446.
    • (1909) Philos. Trans. Roy. Soc. London , vol.A , pp. 415-446
    • Mercer, J.1
  • 38
    • 0036565280 scopus 로고    scopus 로고
    • Mercer Kernel-Based Clustering in Feature Space
    • M. Girolami, "Mercer Kernel-Based Clustering in Feature Space," IEEE Trans. Neural Netw., vol. 13, no. 3, 2002, pp. 780-784.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 41
    • 21744462998 scopus 로고    scopus 로고
    • On Bias, Variance, 0/1 Loss, and the Curse-Of-Dimensionality
    • J.H. Friedman, "On Bias, Variance, 0/1 Loss, and the Curse-Of-Dimensionality," Data Mining and Knowledge Discovery, vol. 1, no. 1, 1997, pp. 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 42
    • 0012993529 scopus 로고    scopus 로고
    • Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem
    • M. Girolami, "Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem," Neural Comput., vol. 14, no. 3, 2002, pp. 669-688.
    • (2002) Neural Comput , vol.14 , Issue.3 , pp. 669-688
    • Girolami, M.1
  • 43
    • 0035419755 scopus 로고    scopus 로고
    • Parametric Statistical Modeling by Integrated Squared Error
    • D.W. Scott, "Parametric Statistical Modeling by Integrated Squared Error," Technometrics, vol. 43, 2001, pp. 274-285.
    • (2001) Technometrics , vol.43 , pp. 274-285
    • Scott, D.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.