메뉴 건너뛰기




Volumn 20, Issue 9, 2009, Pages 1403-1416

Partial logistic artificial neural network for competing risks regularized with automatic relevance determination

Author keywords

Censorship; Prognostic modeling; Risk analysis; Survival modeling; Time to event data

Indexed keywords

ARTIFICIAL NEURAL NETWORK; AUTOMATIC RELEVANCE DETERMINATION; BAYESIAN REGULARIZATION; BREAST CANCER; CENSORSHIP; CLINICAL PROGNOSIS; COMPETING RISKS; CREDIT SCORING; DATA SETS; EVENT ANALYSIS; NEURAL NETWORK MODEL; PROGNOSTIC MODELING; RISK MODELING; SURVIVAL MODELING; THEORETICAL FRAMEWORK; TIME-TO-EVENT DATA;

EID: 70349260138     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2009.2023654     Document Type: Article
Times cited : (41)

References (37)
  • 1
    • 0002930398 scopus 로고
    • Non parametric inference in connection with multiple decrement models
    • O. O. Aalen, "Non parametric inference in connection with multiple decrement models," Scandinavian J. Statist., vol. 3, pp. 15-27, 1976.
    • (1976) Scandinavian J. Statist , vol.3 , pp. 15-27
    • Aalen, O.O.1
  • 2
    • 4444301678 scopus 로고    scopus 로고
    • Improving Cox survival analysis with a neural-Bayesian approach
    • B. Bakker, T. Heskes, J. Neijt, and B. Kappen, "Improving Cox survival analysis with a neural-Bayesian approach," Statist. Med., vol. 23, pp. 2989-3012, 2004.
    • (2004) Statist. Med , vol.23 , pp. 2989-3012
    • Bakker, B.1    Heskes, T.2    Neijt, J.3    Kappen, B.4
  • 3
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini, "Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach," Statist. Med., vol. 17, pp. 1169-1186, 1998.
    • (1998) Statist. Med , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 4
    • 0036199021 scopus 로고    scopus 로고
    • A general framework for neural network models on censored survival data
    • E. Biganzoli, P. Borachhi, and E. Marubini, "A general framework for neural network models on censored survival data," Neural Netw., vol. 15, pp. 209-218, 2002.
    • (2002) Neural Netw , vol.15 , pp. 209-218
    • Biganzoli, E.1    Borachhi, P.2    Marubini, E.3
  • 5
    • 0142216643 scopus 로고    scopus 로고
    • Time-dependent relevance of steroid receptors in breast cancer: A neural network analysis of risk profiles
    • E. Biganzoli, P. Boracchi, D. Coradini, M. G. Daidone, and E. Marubini, "Time-dependent relevance of steroid receptors in breast cancer: A neural network analysis of risk profiles," Ann. Oncology, vol. 14, no. 10, pp. 1484-93, 2003.
    • (2003) Ann. Oncology , vol.14 , Issue.10 , pp. 1484-1493
    • Biganzoli, E.1    Boracchi, P.2    Coradini, D.3    Daidone, M.G.4    Marubini, E.5
  • 6
    • 33744547243 scopus 로고    scopus 로고
    • Artificial neural network models for the joint modeling of discrete cause specific hazards
    • E. Biganzoli, P. Boracchi, F. Ambrogi, and E. Marubini, "Artificial neural network models for the joint modeling of discrete cause specific hazards," Artif. Intell. Med., vol. 37, pp. 119-30, 2006.
    • (2006) Artif. Intell. Med , vol.37 , pp. 119-130
    • Biganzoli, E.1    Boracchi, P.2    Ambrogi, F.3    Marubini, E.4
  • 8
    • 0035977415 scopus 로고    scopus 로고
    • Modelling cause-specific hazards with radial basis function artificial neural networks: Applications to 2233 breast cancer patients
    • P. Boracchi, E. Biganzoli, and E. Marubini, "Modelling cause-specific hazards with radial basis function artificial neural networks: Applications to 2233 breast cancer patients," Statist. Med., vol. 30, pp. 3677-3394, 2001.
    • (2001) Statist. Med , vol.30 , pp. 3677-3394
    • Boracchi, P.1    Biganzoli, E.2    Marubini, E.3
  • 9
    • 0242586102 scopus 로고    scopus 로고
    • Joint modelling of cause-specific hazard functions with cubic splines: An application to a large series of breast cancer patients
    • P. Boracchi, E. Biganzoli, and E. Marubini, "Joint modelling of cause-specific hazard functions with cubic splines: An application to a large series of breast cancer patients," Comput. Statist. Data Anal. vol. 42, pp. 243-262, 2003.
    • (2003) Comput. Statist. Data Anal , vol.42 , pp. 243-262
    • Boracchi, P.1    Biganzoli, E.2    Marubini, E.3
  • 11
    • 0000336139 scopus 로고
    • Regression models and life-tables (with discussion)
    • D. R. Cox, "Regression models and life-tables (with discussion)," J. Roy. Statist. Soc. B, vol. 34, pp. 187-220, 1972.
    • (1972) J. Roy. Statist. Soc. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 13
    • 84950442000 scopus 로고
    • Logistic regression, survival analysis and the Kaplan-Meier curve
    • B. Efron, "Logistic regression, survival analysis and the Kaplan-Meier curve," J. Amer. Statist. Assoc., vol. 83, pp. 414-425, 1988.
    • (1988) J. Amer. Statist. Assoc , vol.83 , pp. 414-425
    • Efron, B.1
  • 14
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • D. Faraggi and R. Simon, "A neural network model for survival data," Statist. Med., vol. 14, pp. 73-82, 1995.
    • (1995) Statist. Med , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 15
    • 0031487090 scopus 로고    scopus 로고
    • Bayesian neural network models for censored data
    • D. Faraggi, R. Simon, E. Yaskil, and A. Kramar, "Bayesian neural network models for censored data," Biometrica J., vol. 5, pp. 519-532, 1997.
    • (1997) Biometrica J , vol.5 , pp. 519-532
    • Faraggi, D.1    Simon, R.2    Yaskil, E.3    Kramar, A.4
  • 17
    • 33845382806 scopus 로고
    • Nonparametric estimation from incomplete observations
    • E. L. Kaplan and P. Meier, "Nonparametric estimation from incomplete observations," J. Amer. Statist. Assoc., vol. 53, pp. 457-481, 1958.
    • (1958) J. Amer. Statist. Assoc , vol.53 , pp. 457-481
    • Kaplan, E.L.1    Meier, P.2
  • 18
    • 0028357513 scopus 로고
    • Survival analysis and neural nets
    • Jun
    • K. Liestol, P. K. Andersen, and U. Andersen, "Survival analysis and neural nets," Statist. Med., vol. 13, no. 12, pp. 1189-200, Jun. 1994.
    • (1994) Statist. Med , vol.13 , Issue.12 , pp. 1189-1200
    • Liestol, K.1    Andersen, P.K.2    Andersen, U.3
  • 19
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • P. J. G. Lisboa, H. Wong, P. Harris, and R. Swindell, "A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer," Artif. Intell. Med. vol. 28, no. 1, pp. 1-25, 2003.
    • (2003) Artif. Intell. Med , vol.28 , Issue.1 , pp. 1-25
    • Lisboa, P.J.G.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 20
    • 0036127092 scopus 로고    scopus 로고
    • A review of evidence of health benefit from artificial neural networks in medical intervention
    • P. J. G. Lisboa, "A review of evidence of health benefit from artificial neural networks in medical intervention," Neural Netw. vol. 15, no. 1, pp. 9-37, 2002.
    • (2002) Neural Netw , vol.15 , Issue.1 , pp. 9-37
    • Lisboa, P.J.G.1
  • 21
    • 0343090468 scopus 로고    scopus 로고
    • Bias reduction in skewed binary classification with Bayesian neural networks
    • P. J. G. Lisboa, A. Vellido, and H.Wong, "Bias reduction in skewed binary classification with Bayesian neural networks," Neural Netw. vol. 13, pp. 407-410, 2000.
    • (2000) Neural Netw , vol.13 , pp. 407-410
    • Lisboa, P.J.G.1    Vellido, A.2    Wong, H.3
  • 22
    • 0029089461 scopus 로고
    • Applying Cox regression to competing risks
    • Jun
    • M. Lunn and D. McNeil, "Applying Cox regression to competing risks," Biometrics, vol. 51, no. 2, pp. 524-32, Jun. 1995.
    • (1995) Biometrics , vol.51 , Issue.2 , pp. 524-532
    • Lunn, M.1    McNeil, D.2
  • 23
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay, "Bayesian interpolation," Neural Comput., vol. 4, pp. 415-447, 1992.
    • (1992) Neural Comput , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 24
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. C. MacKay, "The evidence framework applied to classification networks," Neural Comput., vol. 4, no. 5, pp. 720-736, 1992.
    • (1992) Neural Comput , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 25
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • D. J. C. MacKay, "Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks," Network: Comput. Neural Syst., vol. 6, pp. 469-505, 1995.
    • (1995) Network: Comput. Neural Syst , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 26
    • 0003575316 scopus 로고    scopus 로고
    • Analysing Survival Data From Clinical Trials and Observational Studies
    • London, U.K, Wiley-VCH
    • E. Marubini and M. G. Valsecchi, Analysing Survival Data From Clinical Trials and Observational Studies, ser. Statistics in Practice. London, U.K.: Wiley-VCH, 2004.
    • (2004) ser. Statistics in Practice
    • Marubini, E.1    Valsecchi, M.G.2
  • 27
    • 4544294260 scopus 로고    scopus 로고
    • NETLAB: Algorithms for pattern recognition
    • New York: Springer-Verlag
    • I. Nabney, "NETLAB: Algorithms for pattern recognition," in Advances in Pattern Recognition. New York: Springer-Verlag, 2002.
    • (2002) Advances in Pattern Recognition
    • Nabney, I.1
  • 28
    • 0000294112 scopus 로고
    • Theory and applications of hazard plotting for censored failure data
    • W. B. Nelson, "Theory and applications of hazard plotting for censored failure data," Technometrics, vol. 945, p. 965, 1972.
    • (1972) Technometrics , vol.945 , pp. 965
    • Nelson, W.B.1
  • 30
    • 0026794564 scopus 로고
    • A practical application of neural network analysis for predicting outcome of individual breast cancer patients
    • Oct
    • P. M. Ravdin and G. M. Clark, "A practical application of neural network analysis for predicting outcome of individual breast cancer patients," Breast Cancer Res. Treatment, vol. 22, no. 3, pp. 285-293, Oct. 1992.
    • (1992) Breast Cancer Res. Treatment , vol.22 , Issue.3 , pp. 285-293
    • Ravdin, P.M.1    Clark, G.M.2
  • 31
    • 0011827330 scopus 로고    scopus 로고
    • Neural networks as statistical methods in survival analysis
    • R. Dybowski and V. Gant, Eds. Austin, TX: Landes Biosciences
    • B. D. Ripley and R. M. Ripley, "Neural networks as statistical methods in survival analysis," in Artificial Neural Networks: Prospects for Medicine, R. Dybowski and V. Gant, Eds. Austin, TX: Landes Biosciences, 1998.
    • (1998) Artificial Neural Networks: Prospects for Medicine
    • Ripley, B.D.1    Ripley, R.M.2
  • 32
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • G. Schwartzer, W. Vach, and M. Schumacher, "On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology," Statist. Med., vol. 19, pp. 541-551, 2000.
    • (2000) Statist. Med , vol.19 , pp. 541-551
    • Schwartzer, G.1    Vach, W.2    Schumacher, M.3
  • 33
    • 84889660302 scopus 로고
    • Splines as a useful and convenient statistical tool
    • P. L. Smith, "Splines as a useful and convenient statistical tool," Amer. Statist., vol. 33, pp. 57-62, 1979.
    • (1979) Amer. Statist , vol.33 , pp. 57-62
    • Smith, P.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.