메뉴 건너뛰기




Volumn 6731 LNCS, Issue , 2011, Pages 79-89

Sparse functional relevance learning in generalized learning vector quantization

Author keywords

functional vector quantization; information theory; relevance learning

Indexed keywords

BASIS FUNCTIONS; FUNCTIONAL DATAS; FUNCTIONAL RELEVANCE; FUNCTIONAL VECTOR QUANTIZATION; GENERALIZED LEARNING VECTOR QUANTIZATION; LEARNING VECTOR QUANTIZATION; PENALTY FUNCTION; RELEVANCE LEARNING; ENTROPY-BASED;

EID: 79959316865     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21566-7_8     Document Type: Conference Paper
Times cited : (1)

References (15)
  • 1
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059-1068 (2002).
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 2
    • 0000321758 scopus 로고
    • On the adiabatic theorem of quantum mechanics
    • Kato, T.: On the adiabatic theorem of quantum mechanics. Journal of the Physical Society of Japan 5(6), 435-439 (1950).
    • (1950) Journal of the Physical Society of Japan , vol.5 , Issue.6 , pp. 435-439
    • Kato, T.1
  • 3
    • 0003209045 scopus 로고    scopus 로고
    • Self-Organizing Maps
    • Springer, Heidelberg 2nd extended edn 1997
    • Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995), 2nd extended edn. (1997).
    • Springer Series in Information Sciences , vol.30 , pp. 1995
    • Kohonen, T.1
  • 4
    • 39749131593 scopus 로고    scopus 로고
    • A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis
    • DOI 10.1016/j.chemolab.2007.09.004, PII S016974390700192X
    • Krier, C., Rossi, F., Fraņcois, D., Verleysen,M.: A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis. Chemometrics and Intelligent Laboratory Systems 91, 43-53 (2008). (Pubitemid 351297787)
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.91 , Issue.1 , pp. 43-53
    • Krier, C.1    Rossi, F.2    Francois, D.3    Verleysen, M.4
  • 6
    • 84890262130 scopus 로고    scopus 로고
    • Generalization of the lp norm for time series and its application to self-organizing maps
    • Cottrell, M. (ed.) Paris, Sorbonne
    • Lee, J., Verleysen, M.: Generalization of the lp norm for time series and its application to self-organizing maps. In: Cottrell, M. (ed.) Proc. of Workshop on Self- Organizing Maps (WSOM) 2005, Paris, Sorbonne, pp. 733-740 (2005).
    • (2005) Proc. of Workshop on Self-Organizing Maps (WSOM) 2005 , pp. 733-740
    • Lee, J.1    Verleysen, M.2
  • 7
    • 77953779869 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction
    • Springer Science+Business Media New York
    • Lee, J., Verleysen, M.: Nonlinear Dimensionality Reduction. In: Information Sciences and Statistics. Springer Science+Business Media, New York (2007).
    • (2007) Information Sciences and Statistics
    • Lee, J.1    Verleysen, M.2
  • 8
    • 84872352729 scopus 로고    scopus 로고
    • Meurens, M.: Wine data set, http://www.ucl.ac.be/mlg/index.php?page= databases.meurens.bnut.ucl. ac.be.
    • Wine Data Set
    • Meurens, M.1
  • 9
    • 32944462016 scopus 로고    scopus 로고
    • Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
    • DOI 10.1016/j.chemolab.2005.06.010, PII S0169743905000985
    • Rossi, F., Lendasse, A., Fraņcois, D., Wertz, V., Verleysen, M.: Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemometrics and Intelligent Laboratory Systems 80, 215-226 (2006). (Pubitemid 43259500)
    • (2006) Chemometrics and Intelligent Laboratory Systems , vol.80 , Issue.2 , pp. 215-226
    • Rossi, F.1    Lendasse, A.2    Francois, D.3    Wertz, V.4    Verleysen, M.5
  • 13
    • 79958244935 scopus 로고    scopus 로고
    • Divergence based vector quantization
    • Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343-1392 (2011).
    • (2011) Neural Computation , vol.23 , Issue.5 , pp. 1343-1392
    • Villmann, T.1    Haase, S.2
  • 14


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.