메뉴 건너뛰기




Volumn 90, Issue , 2012, Pages 85-95

Functional relevance learning in generalized learning vector quantization

Author keywords

Feature weighting and selection; Functional vector quantization; Relevance learning; Sparse models

Indexed keywords

BASIS FUNCTIONS; CLASSIFICATION TASKS; FEATURE WEIGHTING; FUNCTIONAL APPROACH; FUNCTIONAL DATAS; FUNCTIONAL RELEVANCE; GENERALIZED LEARNING VECTOR QUANTIZATION; HIGH-DIMENSIONAL; LEARNING VECTOR QUANTIZATION; MODEL OPTIMIZATION; NUMBER OF DATUM; RELEVANCE LEARNING; RELEVANCE MODELS;

EID: 84860237512     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.11.029     Document Type: Article
Times cited : (32)

References (31)
  • 4
    • 0003209045 scopus 로고
    • Self-Organizing Maps
    • Springer, Berlin, Heidelberg, (Second Extended Edition 1997).
    • T. Kohonen, Self-Organizing Maps, Springer Series in Information Sciences, vol. 30, Springer, Berlin, Heidelberg, 1995 (Second Extended Edition 1997).
    • (1995) Springer Series in Information Sciences , vol.30
    • Kohonen, T.1
  • 10
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B., Villmann T. Generalized relevance learning vector quantization. Neural Networks 2002, 15(8-9):1059-1068.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 11
    • 17444390516 scopus 로고    scopus 로고
    • On the generalization ability of GRLVQ networks
    • Hammer B., Strickert M., Villmann T. On the generalization ability of GRLVQ networks. Neural Process. Lett. 2005, 21(2):109-120.
    • (2005) Neural Process. Lett. , vol.21 , Issue.2 , pp. 109-120
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 13
    • 42549151882 scopus 로고    scopus 로고
    • Relevance-based feature extraction for hyperspectral images
    • Mendenhall M., Merényi E. Relevance-based feature extraction for hyperspectral images. IEEE Trans. Neural Networks 2008, 19(4):658-672.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.4 , pp. 658-672
    • Mendenhall, M.1    Merényi, E.2
  • 17
    • 0000321758 scopus 로고
    • On the adiabatic theorem of quantum mechanics
    • Kato T. On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 1950, 5(6):435-439.
    • (1950) J. Phys. Soc. Jpn. , vol.5 , Issue.6 , pp. 435-439
    • Kato, T.1
  • 18
    • 42049122152 scopus 로고    scopus 로고
    • Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods
    • Villmann T., Schleif F.-M., Kostrzewa M., Walch A., Hammer B. Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings Bioinformatics 2008, 9(2):129-143.
    • (2008) Briefings Bioinformatics , vol.9 , Issue.2 , pp. 129-143
    • Villmann, T.1    Schleif, F.-M.2    Kostrzewa, M.3    Walch, A.4    Hammer, B.5
  • 19
    • 84860246830 scopus 로고    scopus 로고
    • TECATOR: Submitted by Hans Henrik Thodberg, Tecator meat sample dataset, available on:
    • TECATOR: Submitted by Hans Henrik Thodberg, Tecator meat sample dataset, available on: http://lib.stat.cmu.edu/datasets/tecator.
  • 20
    • 84860247710 scopus 로고    scopus 로고
    • Prof. Marc Meurens, Wine data set provided by Available on, meurens@bnut.ucl.ac.be
    • Wine data set provided by Prof. Marc Meurens, Available on http://www.ucl.ac.be/mlg/index.php?page=databases, meurens@bnut.ucl.ac.be.
  • 21
    • 84886996104 scopus 로고    scopus 로고
    • Supervised variable clustering for classification of NIR spectra
    • Proceedings of XVIth European Symposium on Artificial Neural Networks (ESANN 2009), Bruges, Belgique
    • C. Krier, M. Verleysen, F. Rossi, D. François, Supervised variable clustering for classification of NIR spectra, in: Proceedings of XVIth European Symposium on Artificial Neural Networks (ESANN 2009), Bruges, Belgique, 2009, pp. 263-268.
    • (2009) , pp. 263-268
    • Krier, C.1    Verleysen, M.2    Rossi, F.3    François, D.4
  • 22
    • 39749131593 scopus 로고    scopus 로고
    • A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis
    • Krier C., Rossi F., François D., Verleysen M. A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis. Chemometrics Intelligent Lab. Syst. 2008, 91:43-53.
    • (2008) Chemometrics Intelligent Lab. Syst. , vol.91 , pp. 43-53
    • Krier, C.1    Rossi, F.2    François, D.3    Verleysen, M.4
  • 23
    • 84890262130 scopus 로고    scopus 로고
    • Generalization of the lp norm for time series and its application to self-organizing maps
    • M. Cottrell (Ed.), Proceedings of Workshop on Self-Organizing Maps (WSOM) 2005, Paris, Sorbonne
    • J. Lee, M. Verleysen, Generalization of the lp norm for time series and its application to self-organizing maps, in: M. Cottrell (Ed.), Proceedings of Workshop on Self-Organizing Maps (WSOM) 2005, Paris, Sorbonne, 2005, pp. 733-740.
    • (2005) , pp. 733-740
    • Lee, J.1    Verleysen, M.2
  • 24
    • 0030537857 scopus 로고    scopus 로고
    • Smoothed functional principal components analysis by the choice of norm
    • Silverman B. Smoothed functional principal components analysis by the choice of norm. Ann. Stat. 1996, 24(1):1-24.
    • (1996) Ann. Stat. , vol.24 , Issue.1 , pp. 1-24
    • Silverman, B.1
  • 26
    • 79959286017 scopus 로고    scopus 로고
    • Theoretical aspects of kernel GLVQ with differentiable kernel
    • IfI Technical Report Series (IfI-09-12)
    • T. Villmann, B. Hammer, Theoretical aspects of kernel GLVQ with differentiable kernel, IfI Technical Report Series (IfI-09-12), 2009, pp. 133-141.
    • (2009) , pp. 133-141
    • Villmann, T.1    Hammer, B.2
  • 27
    • 79958244935 scopus 로고    scopus 로고
    • Divergence based vector quantization
    • Villmann T., Haase S. Divergence based vector quantization. Neural Comput. 2011, 23(5):1343-1392.
    • (2011) Neural Comput. , vol.23 , Issue.5 , pp. 1343-1392
    • Villmann, T.1    Haase, S.2
  • 29
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Schneider P., Hammer B., Biehl M. Adaptive relevance matrices in learning vector quantization. Neural Comput. 2009, 21:3532-3561.
    • (2009) Neural Comput. , vol.21 , pp. 3532-3561
    • Schneider, P.1    Hammer, B.2    Biehl, M.3
  • 30
    • 77649237216 scopus 로고    scopus 로고
    • Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data
    • Bunte K., Hammer B., Wismüller A., Biehl M. Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing 2010, 73:1074-1092.
    • (2010) Neurocomputing , vol.73 , pp. 1074-1092
    • Bunte, K.1    Hammer, B.2    Wismüller, A.3    Biehl, M.4
  • 31
    • 84887115730 scopus 로고    scopus 로고
    • About sparsity in functional relevance learning in generalized learning vector quantization
    • Machine Learning Reports 5 (MLR-03-2011), ISSN:1865-3960
    • M. Kästner, T. Villmann, M. Biehl, About sparsity in functional relevance learning in generalized learning vector quantization, Machine Learning Reports 5 (MLR-03-2011), 2011, pp. 1-12, ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_03_2011.pdf.
    • (2011) , pp. 1-12
    • Kästner, M.1    Villmann, T.2    Biehl, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.