-
2
-
-
15844383263
-
Representation of functional data in neural networks
-
Rossi F., Delannay N., Conan-Gueza B., Verleysen M. Representation of functional data in neural networks. Neurocomputing 2005, 64:183-210.
-
(2005)
Neurocomputing
, vol.64
, pp. 183-210
-
-
Rossi, F.1
Delannay, N.2
Conan-Gueza, B.3
Verleysen, M.4
-
4
-
-
0003209045
-
Self-Organizing Maps
-
Springer, Berlin, Heidelberg, (Second Extended Edition 1997).
-
T. Kohonen, Self-Organizing Maps, Springer Series in Information Sciences, vol. 30, Springer, Berlin, Heidelberg, 1995 (Second Extended Edition 1997).
-
(1995)
Springer Series in Information Sciences
, vol.30
-
-
Kohonen, T.1
-
7
-
-
85156210800
-
Generalized learning vector quantization
-
MIT Press, Cambridge, MA, USA, D.S. Touretzky, M.C. Mozer, M.E. Hasselmo (Eds.)
-
Sato A., Yamada K. Generalized learning vector quantization. Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference 1996, 423-429. MIT Press, Cambridge, MA, USA. D.S. Touretzky, M.C. Mozer, M.E. Hasselmo (Eds.).
-
(1996)
Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference
, pp. 423-429
-
-
Sato, A.1
Yamada, K.2
-
8
-
-
79953842056
-
Margin analysis of the LVQ algorithm
-
MIT Press, Cambridge, MA
-
Crammer K., Gilad-Bachrach R., Navot A., Tishby A. Margin analysis of the LVQ algorithm. Advances in Neural Information Processing, Proceedings of the NIPS 2002 2003, vol. 15:462-469. MIT Press, Cambridge, MA.
-
(2003)
Advances in Neural Information Processing, Proceedings of the NIPS 2002
, vol.15
, pp. 462-469
-
-
Crammer, K.1
Gilad-Bachrach, R.2
Navot, A.3
Tishby, A.4
-
9
-
-
84860262156
-
Equilibrium properties of offline LVQ
-
d-side Publications, Evere, Belgium, M. Verleysen (Ed.)
-
Witoelar A., Biehl M., Hammer B. Equilibrium properties of offline LVQ. Proceedings of European Symposium on Artificial Neural Networks (ESANN'2009) 2009, 535-540. d-side Publications, Evere, Belgium. M. Verleysen (Ed.).
-
(2009)
Proceedings of European Symposium on Artificial Neural Networks (ESANN'2009)
, pp. 535-540
-
-
Witoelar, A.1
Biehl, M.2
Hammer, B.3
-
10
-
-
0036791938
-
Generalized relevance learning vector quantization
-
Hammer B., Villmann T. Generalized relevance learning vector quantization. Neural Networks 2002, 15(8-9):1059-1068.
-
(2002)
Neural Networks
, vol.15
, Issue.8-9
, pp. 1059-1068
-
-
Hammer, B.1
Villmann, T.2
-
12
-
-
9444220311
-
Relevance LVQ versus SVM
-
Springer Verlag, Berlin, Heidelberg
-
Hammer B., Strickert M., Villmann T. Relevance LVQ versus SVM. Artificial Intelligence and Soft Computing (ICAISC 2004), Lecture Notes in Artificial Intelligence 2004, vol. 3070:592-597. Springer Verlag, Berlin, Heidelberg.
-
(2004)
Artificial Intelligence and Soft Computing (ICAISC 2004), Lecture Notes in Artificial Intelligence
, vol.3070
, pp. 592-597
-
-
Hammer, B.1
Strickert, M.2
Villmann, T.3
-
13
-
-
42549151882
-
Relevance-based feature extraction for hyperspectral images
-
Mendenhall M., Merényi E. Relevance-based feature extraction for hyperspectral images. IEEE Trans. Neural Networks 2008, 19(4):658-672.
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, Issue.4
, pp. 658-672
-
-
Mendenhall, M.1
Merényi, E.2
-
17
-
-
0000321758
-
On the adiabatic theorem of quantum mechanics
-
Kato T. On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 1950, 5(6):435-439.
-
(1950)
J. Phys. Soc. Jpn.
, vol.5
, Issue.6
, pp. 435-439
-
-
Kato, T.1
-
18
-
-
42049122152
-
Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods
-
Villmann T., Schleif F.-M., Kostrzewa M., Walch A., Hammer B. Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings Bioinformatics 2008, 9(2):129-143.
-
(2008)
Briefings Bioinformatics
, vol.9
, Issue.2
, pp. 129-143
-
-
Villmann, T.1
Schleif, F.-M.2
Kostrzewa, M.3
Walch, A.4
Hammer, B.5
-
19
-
-
84860246830
-
-
TECATOR: Submitted by Hans Henrik Thodberg, Tecator meat sample dataset, available on:
-
TECATOR: Submitted by Hans Henrik Thodberg, Tecator meat sample dataset, available on: http://lib.stat.cmu.edu/datasets/tecator.
-
-
-
-
20
-
-
84860247710
-
-
Prof. Marc Meurens, Wine data set provided by Available on, meurens@bnut.ucl.ac.be
-
Wine data set provided by Prof. Marc Meurens, Available on http://www.ucl.ac.be/mlg/index.php?page=databases, meurens@bnut.ucl.ac.be.
-
-
-
-
21
-
-
84886996104
-
Supervised variable clustering for classification of NIR spectra
-
Proceedings of XVIth European Symposium on Artificial Neural Networks (ESANN 2009), Bruges, Belgique
-
C. Krier, M. Verleysen, F. Rossi, D. François, Supervised variable clustering for classification of NIR spectra, in: Proceedings of XVIth European Symposium on Artificial Neural Networks (ESANN 2009), Bruges, Belgique, 2009, pp. 263-268.
-
(2009)
, pp. 263-268
-
-
Krier, C.1
Verleysen, M.2
Rossi, F.3
François, D.4
-
22
-
-
39749131593
-
A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis
-
Krier C., Rossi F., François D., Verleysen M. A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis. Chemometrics Intelligent Lab. Syst. 2008, 91:43-53.
-
(2008)
Chemometrics Intelligent Lab. Syst.
, vol.91
, pp. 43-53
-
-
Krier, C.1
Rossi, F.2
François, D.3
Verleysen, M.4
-
23
-
-
84890262130
-
Generalization of the lp norm for time series and its application to self-organizing maps
-
M. Cottrell (Ed.), Proceedings of Workshop on Self-Organizing Maps (WSOM) 2005, Paris, Sorbonne
-
J. Lee, M. Verleysen, Generalization of the lp norm for time series and its application to self-organizing maps, in: M. Cottrell (Ed.), Proceedings of Workshop on Self-Organizing Maps (WSOM) 2005, Paris, Sorbonne, 2005, pp. 733-740.
-
(2005)
, pp. 733-740
-
-
Lee, J.1
Verleysen, M.2
-
24
-
-
0030537857
-
Smoothed functional principal components analysis by the choice of norm
-
Silverman B. Smoothed functional principal components analysis by the choice of norm. Ann. Stat. 1996, 24(1):1-24.
-
(1996)
Ann. Stat.
, vol.24
, Issue.1
, pp. 1-24
-
-
Silverman, B.1
-
26
-
-
79959286017
-
Theoretical aspects of kernel GLVQ with differentiable kernel
-
IfI Technical Report Series (IfI-09-12)
-
T. Villmann, B. Hammer, Theoretical aspects of kernel GLVQ with differentiable kernel, IfI Technical Report Series (IfI-09-12), 2009, pp. 133-141.
-
(2009)
, pp. 133-141
-
-
Villmann, T.1
Hammer, B.2
-
27
-
-
79958244935
-
Divergence based vector quantization
-
Villmann T., Haase S. Divergence based vector quantization. Neural Comput. 2011, 23(5):1343-1392.
-
(2011)
Neural Comput.
, vol.23
, Issue.5
, pp. 1343-1392
-
-
Villmann, T.1
Haase, S.2
-
28
-
-
79953107371
-
Divergence based classification in learning vector quantization
-
Mwebaze E., Schneider P., Schleif F.-M., Aduwo J., Quinn J., Haase S., Villmann T., Biehl M. Divergence based classification in learning vector quantization. Neurocomputing 2011, 74(9):1429-1435.
-
(2011)
Neurocomputing
, vol.74
, Issue.9
, pp. 1429-1435
-
-
Mwebaze, E.1
Schneider, P.2
Schleif, F.-M.3
Aduwo, J.4
Quinn, J.5
Haase, S.6
Villmann, T.7
Biehl, M.8
-
29
-
-
72249111970
-
Adaptive relevance matrices in learning vector quantization
-
Schneider P., Hammer B., Biehl M. Adaptive relevance matrices in learning vector quantization. Neural Comput. 2009, 21:3532-3561.
-
(2009)
Neural Comput.
, vol.21
, pp. 3532-3561
-
-
Schneider, P.1
Hammer, B.2
Biehl, M.3
-
30
-
-
77649237216
-
Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data
-
Bunte K., Hammer B., Wismüller A., Biehl M. Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing 2010, 73:1074-1092.
-
(2010)
Neurocomputing
, vol.73
, pp. 1074-1092
-
-
Bunte, K.1
Hammer, B.2
Wismüller, A.3
Biehl, M.4
-
31
-
-
84887115730
-
About sparsity in functional relevance learning in generalized learning vector quantization
-
Machine Learning Reports 5 (MLR-03-2011), ISSN:1865-3960
-
M. Kästner, T. Villmann, M. Biehl, About sparsity in functional relevance learning in generalized learning vector quantization, Machine Learning Reports 5 (MLR-03-2011), 2011, pp. 1-12, ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_03_2011.pdf.
-
(2011)
, pp. 1-12
-
-
Kästner, M.1
Villmann, T.2
Biehl, M.3
|