메뉴 건너뛰기




Volumn 38, Issue , 2015, Pages 10-22

Evolutionary wrapper approaches for training set selection as preprocessing mechanism for support vector machines: Experimental evaluation and support vector analysis

Author keywords

Data reduction; Support vector machines; Training set selection

Indexed keywords

DATA REDUCTION; VECTORS;

EID: 84944226789     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.09.006     Document Type: Article
Times cited : (45)

References (39)
  • 1
    • 68849109676 scopus 로고    scopus 로고
    • Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
    • S. García, A. Fernandez, and F. Herrera Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems Appl. Soft Comput. 9 2009 1304 1314
    • (2009) Appl. Soft Comput. , vol.9 , pp. 1304-1314
    • García, S.1    Fernandez, A.2    Herrera, F.3
  • 2
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability
    • J.R. Cano, F. Herrera, and M. Lozano Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability Data Knowl. Eng. 60 2007 90 108
    • (2007) Data Knowl. Eng. , vol.60 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 4
    • 84891736888 scopus 로고    scopus 로고
    • Fuzzy nearest neighbor algorithms: taxonomy, experimental analysis and prospects
    • J. Derrac, S. García, and F. Herrera Fuzzy nearest neighbor algorithms: taxonomy, experimental analysis and prospects Inf. Sci. 260 2014 98 119
    • (2014) Inf. Sci. , vol.260 , pp. 98-119
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 5
    • 84856161441 scopus 로고    scopus 로고
    • Prototype selection for nearest neighbor classification: taxonomy and empirical study
    • S. García, J. Derrac, J.R. Cano, and F. Herrera Prototype selection for nearest neighbor classification: taxonomy and empirical study IEEE Trans. Pattern Anal. Mach. Intell. 34 3 2012 417 435
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.3 , pp. 417-435
    • García, S.1    Derrac, J.2    Cano, J.R.3    Herrera, F.4
  • 6
    • 84876260675 scopus 로고    scopus 로고
    • Fast instance selection for speeding up support vector machines
    • J. Chen, C. Zhang, X. Xue, and C.L. Liu Fast instance selection for speeding up support vector machines Knowl. Based Syst. 45 2013 1 7
    • (2013) Knowl. Based Syst. , vol.45 , pp. 1-7
    • Chen, J.1    Zhang, C.2    Xue, X.3    Liu, C.L.4
  • 7
    • 77249162695 scopus 로고    scopus 로고
    • A competitive learning approach to instance selection for support vector machines
    • M. Zechner, and M. Granitzer A competitive learning approach to instance selection for support vector machines Knowledge Science Engineering and Management, Vol. 5914 2009 146 157
    • (2009) Knowledge Science Engineering and Management , vol.5914 , pp. 146-157
    • Zechner, M.1    Granitzer, M.2
  • 8
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier: simultaneous editing and feature selection
    • L.I. Kuncheva, and L.C. Jain Nearest neighbor classifier: simultaneous editing and feature selection Pattern Recogn. Lett. 20 1999 1149 1156
    • (1999) Pattern Recogn. Lett. , vol.20 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.C.2
  • 9
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • L.I. Kuncheva Editing for the k-nearest neighbors rule by a genetic algorithm Pattern Recogn. Lett. 16 8 1995 809 814
    • (1995) Pattern Recogn. Lett. , vol.16 , Issue.8 , pp. 809-814
    • Kuncheva, L.I.1
  • 10
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • W. Ting-Fan, L. Chih-Jen, and W.C. Ruby Probability estimates for multi-class classification by pairwise coupling J. Mach. Learn. Res. 5 2004 975 1005
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Ting-Fan, W.1    Chih-Jen, L.2    Ruby, W.C.3
  • 11
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes
    • M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes Pattern Recogn. 44 8 2011 1761 1776
    • (2011) Pattern Recogn. , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 12
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie, and R. Tibshirani Classification by pairwise coupling Ann. Stat. 26 2 1998 451 471
    • (1998) Ann. Stat. , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 14
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • D.L. Wilson Asymptotic properties of nearest neighbor rules using edited data IEEE Trans. Syst. Man Cybern. 2 3 1972 408 421
    • (1972) IEEE Trans. Syst. Man Cybern. , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 16
    • 0016969272 scopus 로고
    • An experiment with the edited nearest-neighbor rule
    • I. Tomek An experiment with the edited nearest-neighbor rule IEEE Trans. Syst. Man Cybern. 6 6 1976 448 452
    • (1976) IEEE Trans. Syst. Man Cybern. , vol.6 , Issue.6 , pp. 448-452
    • Tomek, I.1
  • 17
    • 0033883192 scopus 로고    scopus 로고
    • A new edited k-nearest neighbor rule in the pattern classification problem
    • K. Hattori, and M. Takahashi A new edited k-nearest neighbor rule in the pattern classification problem Pattern Recogn. 32 2000 521 528
    • (2000) Pattern Recogn. , vol.32 , pp. 521-528
    • Hattori, K.1    Takahashi, M.2
  • 19
    • 38249042848 scopus 로고
    • On the editing rate of the multiedit algorithm
    • P. Devijver On the editing rate of the multiedit algorithm Pattern Recogn. Lett. 4 1 1986 9 12
    • (1986) Pattern Recogn. Lett. , vol.4 , Issue.1 , pp. 9-12
    • Devijver, P.1
  • 20
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbour rule through proximity graphs
    • J.S. Sánchez, F. Pla, and F.J. Ferri Prototype selection for the nearest neighbour rule through proximity graphs Pattern Recogn. Lett. 18 1997 507 513
    • (1997) Pattern Recogn. Lett. , vol.18 , pp. 507-513
    • Sánchez, J.S.1    Pla, F.2    Ferri, F.J.3
  • 21
    • 0002976263 scopus 로고
    • Recursive automatic bias selection for classifier construction
    • C.E. Brodley Recursive automatic bias selection for classifier construction Mach. Learn. 20 1995 63 94
    • (1995) Mach. Learn. , vol.20 , pp. 63-94
    • Brodley, C.E.1
  • 23
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study
    • J.R. Cano, F. Herrera, and M. Lozano Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study IEEE Trans. Evol. Comput. 7 6 2003 561 575
    • (2003) IEEE Trans. Evol. Comput. , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 24
    • 0001334115 scopus 로고
    • The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination
    • L. Eshelman The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination Found. Genet. Algorithms 1991 265 283
    • (1991) Found. Genet. Algorithms , pp. 265-283
    • Eshelman, L.1
  • 26
    • 84878013591 scopus 로고    scopus 로고
    • Frps: a fuzzy rough prototype selection method
    • N. Verbiest, C. Cornelis, and F. Herrera Frps: a fuzzy rough prototype selection method Pattern Recogn. 46 10 2013 2770 2782
    • (2013) Pattern Recogn. , vol.46 , Issue.10 , pp. 2770-2782
    • Verbiest, N.1    Cornelis, C.2    Herrera, F.3
  • 27
    • 84963133436 scopus 로고
    • Rough fuzzy sets and fuzzy rough sets
    • D. Dubois, and H. Prade Rough fuzzy sets and fuzzy rough sets Int. J. Gen. Syst. 17 1990 191 209
    • (1990) Int. J. Gen. Syst. , vol.17 , pp. 191-209
    • Dubois, D.1    Prade, H.2
  • 29
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • J. Cano, F. Herrera, and M. Lozano Stratification for scaling up evolutionary prototype selection Pattern Recogn. Lett. 26 2005 953 963
    • (2005) Pattern Recogn. Lett. , vol.26 , pp. 953-963
    • Cano, J.1    Herrera, F.2    Lozano, M.3
  • 30
    • 60849105643 scopus 로고    scopus 로고
    • Constructing ensembles of classifiers by means of weighted instance selection
    • N. García-Pedrajas Constructing ensembles of classifiers by means of weighted instance selection IEEE Trans. Neural Netw. 20 2 2009 258 277
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.2 , pp. 258-277
    • García-Pedrajas, N.1
  • 32
    • 65049087517 scopus 로고    scopus 로고
    • A divide-and-conquer recursive approach for scaling up instance selection algorithms
    • A. de Haro-García, and N. García-Pedrajas A divide-and-conquer recursive approach for scaling up instance selection algorithms Data Min. Knowl. Discov. 18 3 2009 392 418
    • (2009) Data Min. Knowl. Discov. , vol.18 , Issue.3 , pp. 392-418
    • De Haro-García, A.1    García-Pedrajas, N.2
  • 33
    • 76549101909 scopus 로고    scopus 로고
    • Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts
    • C. García-Osorio, A. de Haro-García, and N. García-Pedrajas Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts Artif. Intell. 174 2010 410 441
    • (2010) Artif. Intell. , vol.174 , pp. 410-441
    • García-Osorio, C.1    De Haro-García, A.2    García-Pedrajas, N.3
  • 35
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman The use of ranks to avoid the assumption of normality implicit in the analysis of variance J. Am. Stat. Assoc. 32 1937 675 701
    • (1937) J. Am. Stat. Assoc. , vol.32 , pp. 675-701
    • Friedman, M.1
  • 36
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Inf. Sci. 180 2010 2044 2064
    • (2010) Inf. Sci. , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 37
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • S. García, and F. Herrera An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons J. Mach. Learn. Res. 9 2008 2677 2694
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 38
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 39
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm A simple sequentially rejective multiple test procedure J. Stat. 6 1979 65 70
    • (1979) J. Stat. , vol.6 , pp. 65-70
    • Holm, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.