메뉴 건너뛰기




Volumn 75, Issue , 2012, Pages 58-77

Large scale instance selection by means of federal instance selection

Author keywords

Instance selection; Instance based learning; Parallel algorithms; Scalability; Very large problems

Indexed keywords

DIGITAL STORAGE; LEARNING SYSTEMS; PARALLEL ALGORITHMS; SCALABILITY;

EID: 84861094585     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2012.03.002     Document Type: Article
Times cited : (16)

References (32)
  • 2
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive learning algorithms
    • F.J. Provost, and V. Kolluri A survey of methods for scaling up inductive learning algorithms Data Mining and Knowledge Discovery 2 1999 131 169
    • (1999) Data Mining and Knowledge Discovery , vol.2 , pp. 131-169
    • Provost, F.J.1    Kolluri, V.2
  • 4
    • 4644347255 scopus 로고    scopus 로고
    • A selective sampling approach to active feature selection
    • H. Liu, H. Motada, and L. Yu A selective sampling approach to active feature selection Artificial Intelligence 159 1-2 2004 49 74
    • (2004) Artificial Intelligence , vol.159 , Issue.12 , pp. 49-74
    • Liu, H.1    Motada, H.2    Yu, L.3
  • 5
    • 76549101909 scopus 로고    scopus 로고
    • Democratic instance selection: A linear complexity instance selection algorithm based on classifier ensemble concepts
    • C. García-Osorio, A. de Haro-García, and N. García-Pedrajas Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts Artificial Intelligence 174 2010 410 441
    • (2010) Artificial Intelligence , vol.174 , pp. 410-441
    • García-Osorio, C.1    De Haro-García, A.2    García-Pedrajas, N.3
  • 7
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • DOI 10.1016/j.patrec.2004.09.043, PII S0167865504002909
    • J.R. Cano, F. Herrera, and M. Lozano Stratification for scaling up evolutionary prototype selection Pattern Recognition Letters 26 7 2005 953 963 (Pubitemid 40538755)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 8
    • 77956666864 scopus 로고    scopus 로고
    • Stratified prototype selection based on a steady-state memetic algorithm: A study of scalability
    • J. Derrac, S. García, and F. Herrera Stratified prototype selection based on a steady-state memetic algorithm: a study of scalability Memetic Computing 2 2010 183 189
    • (2010) Memetic Computing , vol.2 , pp. 183-189
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 9
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • DOI 10.1023/A:1007626913721
    • D.R. Wilson, and T.R. Martinez Reduction techniques for instance-based learning algorithms Machine Learning 38 2000 257 286 (Pubitemid 30572450)
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-286
    • Randall Wilson, D.1    Martinez, T.R.2
  • 10
    • 35348902771 scopus 로고    scopus 로고
    • Fast nearest neighbor condensation for large data sets classification
    • DOI 10.1109/TKDE.2007.190645
    • F. Angiulli Fast nearest neighbor condensation for large data sets classification IEEE Transactions on Knowledge and Data Engineering 19 2007 1450 1464 (Pubitemid 47573790)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.11 , pp. 1450-1464
    • Angiulli, F.1
  • 11
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: A scaling up approach
    • S. García, J.R. Cano, and F. Herrera A memetic algorithm for evolutionary prototype selection: a scaling up approach Pattern Recognition 41 2008 2693 2709
    • (2008) Pattern Recognition , vol.41 , pp. 2693-2709
    • García, S.1    Cano, J.R.2    Herrera, F.3
  • 12
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
    • DOI 10.1016/j.datak.2006.01.008, PII S0169023X0600019X
    • J.R. Cano, F. Herrera, and M. Lozano Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability Data & Knowledge Engineering 60 1 2007 90 108 (Pubitemid 46053591)
    • (2007) Data and Knowledge Engineering , vol.60 , Issue.1 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 14
    • 33646933601 scopus 로고    scopus 로고
    • Online clustering of parallel data streams
    • DOI 10.1016/j.datak.2005.05.009, PII S0169023X05000819
    • J. Beringer, and E. Hüllermeier Online clustering of parallel data streams Data & Knowledge Engineering 58 2006 180 204 (Pubitemid 43795465)
    • (2006) Data and Knowledge Engineering , vol.58 , Issue.2 , pp. 180-204
    • Beringer, J.1    Hullermeier, E.2
  • 15
    • 34147197499 scopus 로고    scopus 로고
    • PPOP: Fast yet accurate parallel hierarchical clustering using partitioning
    • DOI 10.1016/j.datak.2006.07.004, PII S0169023X06001340
    • M. Dash, S. Petrutiu, and P. Scheuermann pPOP: Fast yet accurate parallel hierarchical clustering using partitioning Data & Knowledge Engineering 61 2007 563 578 (Pubitemid 46578259)
    • (2007) Data and Knowledge Engineering , vol.61 , Issue.3 , pp. 563-578
    • Dash, M.1    Petrutiu, S.2    Scheuermann, P.3
  • 17
    • 76749097995 scopus 로고    scopus 로고
    • Prototype selection algorithms for distributed learning
    • I. Czarnowski Prototype selection algorithms for distributed learning Pattern Recognition 43 2010 2292 2300
    • (2010) Pattern Recognition , vol.43 , pp. 2292-2300
    • Czarnowski, I.1
  • 18
    • 0002113656 scopus 로고    scopus 로고
    • Social learning algorithm as a tool for solving some difficult scheduling problems
    • P. Jedrzejowicz Social learning algorithm as a tool for solving some difficult scheduling problems Foundation of Computing and Decision Sciences 24 1999 51 66
    • (1999) Foundation of Computing and Decision Sciences , vol.24 , pp. 51-66
    • Jedrzejowicz, P.1
  • 19
    • 80051777001 scopus 로고    scopus 로고
    • Clustering for Data Reduction: A Divide and Conquer Approach
    • N.O. Andrews, and E.A. Fox Clustering for Data Reduction: A Divide and Conquer Approach Tech. rep., Virginia Tech 2007
    • (2007) Tech. Rep., Virginia Tech
    • Andrews, N.O.1    Fox, E.A.2
  • 20
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • DOI 10.1023/A:1014043630878
    • H. Brighton, and C. Mellish Advances in instance selection for instance-based learning algorithms Data Mining and Knowledge Discovery 6 2002 153 172 (Pubitemid 37113870)
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 23
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • J.R. Cano, F. Herrera, and M. Lozano Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study IEEE Transactions on Evolutionary Computation 7 6 2003 561 575
    • (2003) IEEE Transactions on Evolutionary Computation , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 24
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biometrics 1 1945 80 83
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 25
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 26
    • 55549116330 scopus 로고    scopus 로고
    • Evolutionary rule-based systems for imbalanced data sets
    • A. Orriols-Puig, and E. Bernadó-Mansilla Evolutionary rule-based systems for imbalanced data sets Soft Computing 13 2009 213 225
    • (2009) Soft Computing , vol.13 , pp. 213-225
    • Orriols-Puig, A.1    Bernadó-Mansilla, E.2
  • 28
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
    • S. García, and F. Herrera Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy Evolutionary Computation 17 3 2009 275 306
    • (2009) Evolutionary Computation , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 29
    • 60849105643 scopus 로고    scopus 로고
    • Constructing ensembles of classifiers by means of weighted instance selection
    • N. García-Pedrajas Constructing ensembles of classifiers by means of weighted instance selection IEEE Transactions on Neural Networks 20 2 2008 258 277
    • (2008) IEEE Transactions on Neural Networks , vol.20 , Issue.2 , pp. 258-277
    • García-Pedrajas, N.1
  • 30
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • DOI 10.1016/j.patcog.2007.04.009, PII S0031320307001835
    • Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognition 40 2007 3358 3378 (Pubitemid 47223287)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 32
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R. Holte, and S. Matwin Machine learning for the detection of oil spills in satellite radar images Machine Learning 30 1998 195 215
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.