-
1
-
-
0034172483
-
Learning to construct knowledge bases from the world wide web
-
M. Craven, D. DiPasquoa, D. Freitagb, A. McCalluma, T. Mitchella, K. Nigama, and S. Slatterya Learning to construct knowledge bases from the world wide web Artificial Intelligence 118 1-2 2000 69 113
-
(2000)
Artificial Intelligence
, vol.118
, Issue.12
, pp. 69-113
-
-
Craven, M.1
Dipasquoa, D.2
Freitagb, D.3
McCalluma, A.4
Mitchella, T.5
Nigama, K.6
Slatterya, S.7
-
2
-
-
0141771188
-
A survey of methods for scaling up inductive learning algorithms
-
F.J. Provost, and V. Kolluri A survey of methods for scaling up inductive learning algorithms Data Mining and Knowledge Discovery 2 1999 131 169
-
(1999)
Data Mining and Knowledge Discovery
, vol.2
, pp. 131-169
-
-
Provost, F.J.1
Kolluri, V.2
-
4
-
-
4644347255
-
A selective sampling approach to active feature selection
-
H. Liu, H. Motada, and L. Yu A selective sampling approach to active feature selection Artificial Intelligence 159 1-2 2004 49 74
-
(2004)
Artificial Intelligence
, vol.159
, Issue.12
, pp. 49-74
-
-
Liu, H.1
Motada, H.2
Yu, L.3
-
5
-
-
76549101909
-
Democratic instance selection: A linear complexity instance selection algorithm based on classifier ensemble concepts
-
C. García-Osorio, A. de Haro-García, and N. García-Pedrajas Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts Artificial Intelligence 174 2010 410 441
-
(2010)
Artificial Intelligence
, vol.174
, pp. 410-441
-
-
García-Osorio, C.1
De Haro-García, A.2
García-Pedrajas, N.3
-
7
-
-
17444379003
-
Stratification for scaling up evolutionary prototype selection
-
DOI 10.1016/j.patrec.2004.09.043, PII S0167865504002909
-
J.R. Cano, F. Herrera, and M. Lozano Stratification for scaling up evolutionary prototype selection Pattern Recognition Letters 26 7 2005 953 963 (Pubitemid 40538755)
-
(2005)
Pattern Recognition Letters
, vol.26
, Issue.7
, pp. 953-963
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
8
-
-
77956666864
-
Stratified prototype selection based on a steady-state memetic algorithm: A study of scalability
-
J. Derrac, S. García, and F. Herrera Stratified prototype selection based on a steady-state memetic algorithm: a study of scalability Memetic Computing 2 2010 183 189
-
(2010)
Memetic Computing
, vol.2
, pp. 183-189
-
-
Derrac, J.1
García, S.2
Herrera, F.3
-
9
-
-
0343081513
-
Reduction techniques for instance-based learning algorithms
-
DOI 10.1023/A:1007626913721
-
D.R. Wilson, and T.R. Martinez Reduction techniques for instance-based learning algorithms Machine Learning 38 2000 257 286 (Pubitemid 30572450)
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 257-286
-
-
Randall Wilson, D.1
Martinez, T.R.2
-
10
-
-
35348902771
-
Fast nearest neighbor condensation for large data sets classification
-
DOI 10.1109/TKDE.2007.190645
-
F. Angiulli Fast nearest neighbor condensation for large data sets classification IEEE Transactions on Knowledge and Data Engineering 19 2007 1450 1464 (Pubitemid 47573790)
-
(2007)
IEEE Transactions on Knowledge and Data Engineering
, vol.19
, Issue.11
, pp. 1450-1464
-
-
Angiulli, F.1
-
11
-
-
42749092345
-
A memetic algorithm for evolutionary prototype selection: A scaling up approach
-
S. García, J.R. Cano, and F. Herrera A memetic algorithm for evolutionary prototype selection: a scaling up approach Pattern Recognition 41 2008 2693 2709
-
(2008)
Pattern Recognition
, vol.41
, pp. 2693-2709
-
-
García, S.1
Cano, J.R.2
Herrera, F.3
-
12
-
-
33845982223
-
Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
-
DOI 10.1016/j.datak.2006.01.008, PII S0169023X0600019X
-
J.R. Cano, F. Herrera, and M. Lozano Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability Data & Knowledge Engineering 60 1 2007 90 108 (Pubitemid 46053591)
-
(2007)
Data and Knowledge Engineering
, vol.60
, Issue.1
, pp. 90-108
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
14
-
-
33646933601
-
Online clustering of parallel data streams
-
DOI 10.1016/j.datak.2005.05.009, PII S0169023X05000819
-
J. Beringer, and E. Hüllermeier Online clustering of parallel data streams Data & Knowledge Engineering 58 2006 180 204 (Pubitemid 43795465)
-
(2006)
Data and Knowledge Engineering
, vol.58
, Issue.2
, pp. 180-204
-
-
Beringer, J.1
Hullermeier, E.2
-
15
-
-
34147197499
-
PPOP: Fast yet accurate parallel hierarchical clustering using partitioning
-
DOI 10.1016/j.datak.2006.07.004, PII S0169023X06001340
-
M. Dash, S. Petrutiu, and P. Scheuermann pPOP: Fast yet accurate parallel hierarchical clustering using partitioning Data & Knowledge Engineering 61 2007 563 578 (Pubitemid 46578259)
-
(2007)
Data and Knowledge Engineering
, vol.61
, Issue.3
, pp. 563-578
-
-
Dash, M.1
Petrutiu, S.2
Scheuermann, P.3
-
16
-
-
6444245231
-
Supporting Internet-scale multi-agent systems
-
DOI 10.1016/S0169-023X(02)00042-3, PII S0169023X02000423
-
N.J.E. Wijngaards, B.J. Overeinder, M. van Steen, and F.M.T. Brazier Supporting internet-scale multi-agent systems Data & Knowledge Engineering 41 2002 229 245 (Pubitemid 34449167)
-
(2002)
Data and Knowledge Engineering
, vol.41
, Issue.2-3
, pp. 229-245
-
-
Wijngaards, N.J.E.1
Overeinder, B.J.2
Van Steen, M.3
Brazier, F.M.T.4
-
17
-
-
76749097995
-
Prototype selection algorithms for distributed learning
-
I. Czarnowski Prototype selection algorithms for distributed learning Pattern Recognition 43 2010 2292 2300
-
(2010)
Pattern Recognition
, vol.43
, pp. 2292-2300
-
-
Czarnowski, I.1
-
18
-
-
0002113656
-
Social learning algorithm as a tool for solving some difficult scheduling problems
-
P. Jedrzejowicz Social learning algorithm as a tool for solving some difficult scheduling problems Foundation of Computing and Decision Sciences 24 1999 51 66
-
(1999)
Foundation of Computing and Decision Sciences
, vol.24
, pp. 51-66
-
-
Jedrzejowicz, P.1
-
19
-
-
80051777001
-
Clustering for Data Reduction: A Divide and Conquer Approach
-
N.O. Andrews, and E.A. Fox Clustering for Data Reduction: A Divide and Conquer Approach Tech. rep., Virginia Tech 2007
-
(2007)
Tech. Rep., Virginia Tech
-
-
Andrews, N.O.1
Fox, E.A.2
-
20
-
-
0036104537
-
Advances in instance selection for instance-based learning algorithms
-
DOI 10.1023/A:1014043630878
-
H. Brighton, and C. Mellish Advances in instance selection for instance-based learning algorithms Data Mining and Knowledge Discovery 6 2002 153 172 (Pubitemid 37113870)
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, Issue.2
, pp. 153-172
-
-
Brighton, H.1
Mellish, C.2
-
23
-
-
0347763609
-
Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
-
J.R. Cano, F. Herrera, and M. Lozano Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study IEEE Transactions on Evolutionary Computation 7 6 2003 561 575
-
(2003)
IEEE Transactions on Evolutionary Computation
, vol.7
, Issue.6
, pp. 561-575
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
24
-
-
0001884644
-
Individual comparisons by ranking methods
-
F. Wilcoxon Individual comparisons by ranking methods Biometrics 1 1945 80 83
-
(1945)
Biometrics
, vol.1
, pp. 80-83
-
-
Wilcoxon, F.1
-
25
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
26
-
-
55549116330
-
Evolutionary rule-based systems for imbalanced data sets
-
A. Orriols-Puig, and E. Bernadó-Mansilla Evolutionary rule-based systems for imbalanced data sets Soft Computing 13 2009 213 225
-
(2009)
Soft Computing
, vol.13
, pp. 213-225
-
-
Orriols-Puig, A.1
Bernadó-Mansilla, E.2
-
28
-
-
70349617264
-
Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
-
S. García, and F. Herrera Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy Evolutionary Computation 17 3 2009 275 306
-
(2009)
Evolutionary Computation
, vol.17
, Issue.3
, pp. 275-306
-
-
García, S.1
Herrera, F.2
-
29
-
-
60849105643
-
Constructing ensembles of classifiers by means of weighted instance selection
-
N. García-Pedrajas Constructing ensembles of classifiers by means of weighted instance selection IEEE Transactions on Neural Networks 20 2 2008 258 277
-
(2008)
IEEE Transactions on Neural Networks
, vol.20
, Issue.2
, pp. 258-277
-
-
García-Pedrajas, N.1
-
30
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
DOI 10.1016/j.patcog.2007.04.009, PII S0031320307001835
-
Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognition 40 2007 3358 3378 (Pubitemid 47223287)
-
(2007)
Pattern Recognition
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
32
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
M. Kubat, R. Holte, and S. Matwin Machine learning for the detection of oil spills in satellite radar images Machine Learning 30 1998 195 215
-
(1998)
Machine Learning
, vol.30
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
|