메뉴 건너뛰기




Volumn 46, Issue 10, 2013, Pages 2770-2782

FRPS: A Fuzzy Rough Prototype Selection method

Author keywords

Classification; Fuzzy rough sets; Instance selection; k NN; Prototype Selection

Indexed keywords

CLASSIFICATION METHODS; FUZZY ROUGH SET THEORY; FUZZY-ROUGH SETS; INSTANCE SELECTION; K NEAREST NEIGHBOURS (K-NN); PROTOTYPE SELECTION; WRAPPER APPROACH;

EID: 84878013591     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2013.03.004     Document Type: Article
Times cited : (52)

References (68)
  • 3
    • 35949013829 scopus 로고
    • Comparing a nearest-neighbor estimator of local attractor dimensions for noisy data to the correlation dimension
    • M.E. Farrell, A. Passamante, and T. Hediger Comparing a nearest-neighbor estimator of local attractor dimensions for noisy data to the correlation dimension Physical Review A (Atomic, Molecular, and Optical Physics) 41 12 1990 6591 6595
    • (1990) Physical Review A (Atomic, Molecular, and Optical Physics) , vol.41 , Issue.12 , pp. 6591-6595
    • Farrell, M.E.1    Passamante, A.2    Hediger, T.3
  • 4
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity-based classifiers
    • R.P.W. Duin, and P. Paclík Prototype selection for dissimilarity-based classifiers Pattern Recognition 39 2006 189 208
    • (2006) Pattern Recognition , vol.39 , pp. 189-208
    • Duin, R.P.W.1    Paclík, P.2
  • 7
    • 0038404485 scopus 로고    scopus 로고
    • Rough set algorithms in classification problem
    • J.G. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wróblewski, Rough set algorithms in classification problem, in: Rough Set Methods and Applications, 2000, pp. 49-88.
    • (2000) Rough Set Methods and Applications , pp. 49-88
    • Bazan, J.G.1
  • 8
    • 34250357173 scopus 로고    scopus 로고
    • A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets
    • C. Degang, W. Changzhong, and H. Qinghua A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets Information Science 177 17 2007 3500 3518
    • (2007) Information Science , vol.177 , Issue.17 , pp. 3500-3518
    • Degang, C.1    Changzhong, W.2    Qinghua, H.3
  • 9
    • 36549059218 scopus 로고    scopus 로고
    • Dominance-based rough set approach and knowledge reductions in incomplete ordered information system
    • X. Yang, J. Yang, C. Wu, and D. Yu Dominance-based rough set approach and knowledge reductions in incomplete ordered information system Information Science 178 4 2008 1219 1234
    • (2008) Information Science , vol.178 , Issue.4 , pp. 1219-1234
    • Yang, X.1    Yang, J.2    Wu, C.3    Yu, D.4
  • 10
    • 34548258153 scopus 로고    scopus 로고
    • Data analysis based on discernibility and indiscernibility
    • Y. Zhao, Y. Yao, and F. Luo Data analysis based on discernibility and indiscernibility Information Sciences 177 22 2007 4959 4976
    • (2007) Information Sciences , vol.177 , Issue.22 , pp. 4959-4976
    • Zhao, Y.1    Yao, Y.2    Luo, F.3
  • 11
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorisation
    • A. Chouchoulas, and Q. Shen Rough set-aided keyword reduction for text categorisation Applied Artificial Intelligence 15 9 2001 843 873
    • (2001) Applied Artificial Intelligence , vol.15 , Issue.9 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 12
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • R.W. Swiniarski, and A. Skowron Rough set methods in feature selection and recognition Pattern Recognition Letters 24 6 2003 833 849
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 13
    • 84862895108 scopus 로고    scopus 로고
    • Attribute reduction of data with error ranges and test costs
    • F. Min, and W. Zhu Attribute reduction of data with error ranges and test costs Information Sciences 211 2012 48 67
    • (2012) Information Sciences , vol.211 , pp. 48-67
    • Min, F.1    Zhu, W.2
  • 14
    • 84861191080 scopus 로고    scopus 로고
    • Extended rough set-based attribute reduction in inconsistent incomplete decision systems
    • Z. Meng, and Z. Shi Extended rough set-based attribute reduction in inconsistent incomplete decision systems Information Sciences 204 2012 44 69
    • (2012) Information Sciences , vol.204 , pp. 44-69
    • Meng, Z.1    Shi, Z.2
  • 16
    • 79955557689 scopus 로고    scopus 로고
    • Core-generating approximate minimum entropy discretization for rough set feature selection in pattern classification
    • D. Tian, X. Jun Zeng, and J. Keane Core-generating approximate minimum entropy discretization for rough set feature selection in pattern classification International Journal of Approximate Reasoning 52 6 2011 659 914
    • (2011) International Journal of Approximate Reasoning , vol.52 , Issue.6 , pp. 659-914
    • Tian, D.1    Jun Zeng, X.2    Keane, J.3
  • 21
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Q. Hu, X. Xie, and D. Yu Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation Pattern Recognition 40 12 2007 3509 3521
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3509-3521
    • Hu, Q.1    Xie, X.2    Yu, D.3
  • 22
    • 0348170835 scopus 로고    scopus 로고
    • Fuzzy-rough attribute reduction with application to web categorization
    • R. Jensen, and Q. Shen Fuzzy-rough attribute reduction with application to web categorization Fuzzy Sets and Systems 141 3 2004 469 485
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.3 , pp. 469-485
    • Jensen, R.1    Shen, Q.2
  • 23
    • 33947421283 scopus 로고    scopus 로고
    • Fuzzy-rough sets assisted attribute selection
    • R. Jensen, and Q. Shen Fuzzy-rough sets assisted attribute selection IEEE Transactions on Fuzzy Systems 15 1 2007 73 89
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.1 , pp. 73-89
    • Jensen, R.1    Shen, Q.2
  • 24
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • R. Jensen, and Q. Shen New approaches to fuzzy-rough feature selection IEEE Transactions on Fuzzy Systems 17 4 2009 824 838
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , Issue.4 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 26
    • 45849111442 scopus 로고    scopus 로고
    • On fuzzy approximation operators in attribute reduction with fuzzy rough sets
    • S. Zhao, and E. Tsang On fuzzy approximation operators in attribute reduction with fuzzy rough sets Information Sciences 178 16 2007 3163 3176
    • (2007) Information Sciences , vol.178 , Issue.16 , pp. 3163-3176
    • Zhao, S.1    Tsang, E.2
  • 28
    • 80052924367 scopus 로고    scopus 로고
    • Parameterized attribute reduction with gaussian kernel based fuzzy rough sets
    • D. Chen, Q. Hu, and Y. Yang Parameterized attribute reduction with gaussian kernel based fuzzy rough sets Information Sciences 181 23 2011 5169 5179
    • (2011) Information Sciences , vol.181 , Issue.23 , pp. 5169-5179
    • Chen, D.1    Hu, Q.2    Yang, Y.3
  • 30
    • 0023855863 scopus 로고
    • On ordered weighted averaging aggregation operators in multicriteria decision making
    • R.R. Yager On ordered weighted averaging aggregation operators in multicriteria decision making IEEE Transactions on Systems, Man and Cybernetics 18 1988 183 190
    • (1988) IEEE Transactions on Systems, Man and Cybernetics , vol.18 , pp. 183-190
    • Yager, R.R.1
  • 32
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • D.L. Wilson Asymptotic properties of nearest neighbor rules using edited data IEEE Transactions on Systems, Man and Cybernetics 2 3 1972 408 421
    • (1972) IEEE Transactions on Systems, Man and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 33
    • 0033883192 scopus 로고    scopus 로고
    • A new edited k-nearest neighbor rule in the pattern classification problem
    • K. Hattori, and M. Takahashi A new edited k-nearest neighbor rule in the pattern classification problem Pattern Recognition 32 2000 521 528
    • (2000) Pattern Recognition , vol.32 , pp. 521-528
    • Hattori, K.1    Takahashi, M.2
  • 35
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbour rule through proximity graphs
    • J.S. Sánchez, F. Pla, and F.J. Ferri Prototype selection for the nearest neighbour rule through proximity graphs Pattern Recognition Letters 18 1997 507 513
    • (1997) Pattern Recognition Letters , vol.18 , pp. 507-513
    • Sánchez, J.S.1    Pla, F.2    Ferri, F.J.3
  • 36
    • 0002976263 scopus 로고
    • Recursive automatic bias selection for classifier construction
    • C.E. Brodley Recursive automatic bias selection for classifier construction Machine Learning 20 1995 63 94
    • (1995) Machine Learning , vol.20 , pp. 63-94
    • Brodley, C.E.1
  • 39
    • 35348902771 scopus 로고    scopus 로고
    • Fast nearest neighbor condensation for large data sets classification
    • F. Angiulli Fast nearest neighbor condensation for large data sets classification IEEE Transactions on Knowledge and Data Engineering 19 11 2007 1450 1464
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.11 , pp. 1450-1464
    • Angiulli, F.1
  • 40
    • 0036466989 scopus 로고    scopus 로고
    • An incremental prototype set building technique
    • V.S. Devi, and M.N. Murty An incremental prototype set building technique Pattern Recognition 35 2 2002 505 513
    • (2002) Pattern Recognition , vol.35 , Issue.2 , pp. 505-513
    • Devi, V.S.1    Murty, M.N.2
  • 43
    • 7444264764 scopus 로고    scopus 로고
    • Using the geometrical distribution of prototypes for training set condensing
    • M.T. Lozano, J.S. Sanchez, F. Pla, Using the geometrical distribution of prototypes for training set condensing, in: CAEPIA, Lecture Notes in Computer Science, vol. 3040, 2003, pp. 618-627.
    • (2003) CAEPIA, Lecture Notes in Computer Science , vol.3040 , pp. 618-627
    • Lozano, M.T.1    Sanchez, J.S.2    Pla, F.3
  • 44
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier simultaneous editing and feature selection
    • L.I. Kuncheva, and L.C. Jain Nearest neighbor classifier simultaneous editing and feature selection Pattern Recognition Letters 20 1999 1149 1156
    • (1999) Pattern Recognition Letters , vol.20 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.C.2
  • 45
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • L.I. Kuncheva Editing for the k-nearest neighbors rule by a genetic algorithm Pattern Recognition Letters 16 8 1995 809 814
    • (1995) Pattern Recognition Letters , vol.16 , Issue.8 , pp. 809-814
    • Kuncheva, L.I.1
  • 47
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection a scaling up approach
    • S. García, J.R. Cano, and F. Herrera A memetic algorithm for evolutionary prototype selection a scaling up approach Pattern Recognition 41 2008 2693 2709
    • (2008) Pattern Recognition , vol.41 , pp. 2693-2709
    • García, S.1    Cano, J.R.2    Herrera, F.3
  • 48
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD an experimental study
    • J.R. Cano, F. Herrera, and M. Lozano Using evolutionary algorithms as instance selection for data reduction in KDD an experimental study IEEE Transactions on Evolutionary Computation 7 6 2003 561 575
    • (2003) IEEE Transactions on Evolutionary Computation , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 49
    • 46249122128 scopus 로고    scopus 로고
    • Hit miss networks with applications to instance selection
    • E. Marchiori Hit miss networks with applications to instance selection Journal of Machine Learning Research 9 2008 997 1017
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 997-1017
    • Marchiori, E.1
  • 50
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • D.R. Wilson, and T.R. Martinez Reduction techniques for instance-based learning algorithms Machine Learning 38 2000 257 286
    • (2000) Machine Learning , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 53
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D.W. Aha, D. Kibler, Instance-based learning algorithms, in: Machine Learning, 1991, pp. 37-66.
    • (1991) Machine Learning , pp. 37-66
    • Aha, D.W.1    Kibler, D.2
  • 54
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • H. Brighton, and C. Mellish Advances in instance selection for instance-based learning algorithms Data Mining and Knowledge Discovery 6 2 2002 153 172
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 57
    • 42649112727 scopus 로고    scopus 로고
    • Fuzzy rough set theory for the interval-valued fuzzy information systems
    • B. Sun, Z. Gong, and D. Chen Fuzzy rough set theory for the interval-valued fuzzy information systems Information Sciences 178 13 2008 2794 2815
    • (2008) Information Sciences , vol.178 , Issue.13 , pp. 2794-2815
    • Sun, B.1    Gong, Z.2    Chen, D.3
  • 58
    • 34447536352 scopus 로고    scopus 로고
    • Learning fuzzy rules from fuzzy samples based on rough set technique
    • X. Wang, X. Tsang, D. Zhao, D. Chen, and D. Yean Learning fuzzy rules from fuzzy samples based on rough set technique Information Sciences 177 20 2007 4493 4514
    • (2007) Information Sciences , vol.177 , Issue.20 , pp. 4493-4514
    • Wang, X.1    Tsang, X.2    Zhao, D.3    Chen, D.4    Yean, D.5
  • 61
    • 0036498107 scopus 로고    scopus 로고
    • A comparative study of fuzzy rough sets
    • A. Radzikowska, and E. Kerre A comparative study of fuzzy rough sets Fuzzy Sets and Systems 126 2002 137 156
    • (2002) Fuzzy Sets and Systems , vol.126 , pp. 137-156
    • Radzikowska, A.1    Kerre, E.2
  • 64
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 65
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biometrics Bulletin 6 1945 80 83
    • (1945) Biometrics Bulletin , vol.6 , pp. 80-83
    • Wilcoxon, F.1
  • 66
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • J. Derrac, S. García, D. Molina, and F. Herrera A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms Swarm and Evolutionary Computation 1 1 2011 3 18
    • (2011) Swarm and Evolutionary Computation , vol.1 , Issue.1 , pp. 3-18
    • Derrac, J.1    García, S.2    Molina, D.3    Herrera, F.4
  • 67
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining experimental analysis of power
    • S. García, J.A. Fernandez, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining experimental analysis of power Information Sciences 180 10 2010 2044 2064
    • (2010) Information Sciences , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernandez, J.A.2    Luengo, J.3    Herrera, F.4
  • 68
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning accuracy and interpretability
    • S. García, A. Fernández, J. Luengo, and F. Herrera A study of statistical techniques and performance measures for genetics-based machine learning accuracy and interpretability Soft Computing 13 2009 959 977
    • (2009) Soft Computing , vol.13 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.