-
1
-
-
70349436267
-
Artificial neural network models for forecasting intermittent monthly precipitation in arid regions
-
Aksoy, H., and Dahamsheh, A. (2009). Artificial neural network models for forecasting intermittent monthly precipitation in arid regions. Meteorol. Appl., 16, 325-337. http://dx.doi.org/10.1002/met.127
-
(2009)
Meteorol. Appl
, vol.16
, pp. 325-337
-
-
Aksoy, H.1
Dahamsheh, A.2
-
2
-
-
0034174396
-
Artificial neural networks in hydrology, II: Hydrologic applications
-
ASCE Task Committee on the application of ANN in hydrology
-
ASCE Task Committee on the application of ANN in hydrology (2000). Artificial neural networks in hydrology, II: hydrologic applications. J. Hydrol. Eng., 5(2), 124-137.
-
(2000)
J. Hydrol. Eng
, vol.5
, Issue.2
, pp. 124-137
-
-
-
3
-
-
0000437839
-
Prediction of extreme precipitation using a neural network: Application to summer flood occurrence in Moravia
-
Bodri, L., and Cermak, V. (2000). Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Adv. Eng. Software, 31, 311-321. http://dx.doi.org/10.1016/S0965-9978(99)00063-0
-
(2000)
Adv. Eng. Software
, vol.31
, pp. 311-321
-
-
Bodri, L.1
Cermak, V.2
-
4
-
-
47049108092
-
Comparative study among different neural net learning algorithms applied to rainfall time series
-
Chattopadhyay, G., and Chattopadhyay, S. (2008). Comparative study among different neural net learning algorithms applied to rainfall time series. Meteorol. Appl., 15, 273-280. http://dx.doi.org/10.1002/met.71
-
(2008)
Meteorol. Appl
, vol.15
, pp. 273-280
-
-
Chattopadhyay, G.1
Chattopadhyay, S.2
-
5
-
-
34447256610
-
Feed-forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India
-
Chattopadhyay, S. (2007). Feed-forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India. Acta Geophys., 55, 369-382. http://dx.doi.org/10.2478/s11600-007-0020-8
-
(2007)
Acta Geophys
, vol.55
, pp. 369-382
-
-
Chattopadhyay, S.1
-
6
-
-
33748929857
-
Particle swarm optimization training algorithm for ANN in stage prediction of Shing Mun River
-
Chau, K.W. (2006). Particle swarm optimization training algorithm for ANN in stage prediction of Shing Mun River. J. Hydrol., 329 (3-4), 363-367. http://dx.doi.org/10.1016/j.jhydrol.2006.02.025
-
(2006)
J. Hydrol
, vol.329
, Issue.3-4
, pp. 363-367
-
-
Chau, K.W.1
-
7
-
-
84943231434
-
Real-time prediction of water stage with artificial neural network approach
-
Notes Contr. Inf
-
Chau, K.W., and Cheng, C.T. (2002). Real-time prediction of water stage with artificial neural network approach. Advances in Artificial Intelligence, Lect. Notes Contr. Inf., 2557, 715. http://dx.doi.org/10.1007/3-540-36187-1-64
-
(2002)
Advances In Artificial Intelligence, Lect
, pp. 715
-
-
Chau, K.W.1
Cheng, C.T.2
-
8
-
-
2342639070
-
The biogeography of invasive alien plants in California: An application of GIS and spatial regression analysis
-
Dark, S.J. (2004). The biogeography of invasive alien plants in California: an application of GIS and spatial regression analysis. Divers. Distrib., 10, 1-9. http://dx.doi.org/10.1111/j.1472-4642.2004.00054.x
-
(2004)
Divers. Distrib
, vol.10
, pp. 1-9
-
-
Dark, S.J.1
-
9
-
-
84859076664
-
A Comparison of methods used in estimating missing rainfall data
-
De Silva, R.P., Dayawansa N.D.K., and Ratnasiri, M.D. (2007). A Comparison of methods used in estimating missing rainfall data. J. Agric.Sci., 3(2), 101-108.
-
(2007)
J. Agric. Sci
, vol.3
, Issue.2
, pp. 101-108
-
-
de Silva, R.P.1
Dayawansa, N.D.K.2
Ratnasiri, M.D.3
-
10
-
-
0037005708
-
Estimation of missing stream flow data using principles of chaos theory
-
Elshorbagy, A., Simonovic, S.P., Panu, U.S. (2002).Estimation of missing stream flow data using principles of chaos theory. J. Hydrol., 255, 123-133. http://dx.doi.org/10.1016/S0022-1694(01)00513-3
-
(2002)
J. Hydrol
, vol.255
, pp. 123-133
-
-
Elshorbagy, A.1
Simonovic, S.P.2
Panu, U.S.3
-
11
-
-
0000152448
-
Forecasting with neural networks: An application using bankruptcy data
-
Fletcher, D., and Goss, E. (1993). Forecasting with neural networks: An application using bankruptcy data. Inform. Manage., 24, 159-167. http://dx.doi.org/10.1016/0378-7206(93)90064-Z
-
(1993)
Inform. Manage
, vol.24
, pp. 159-167
-
-
Fletcher, D.1
Goss, E.2
-
12
-
-
0027007868
-
Rainfall forecasting in space and time using a neural network
-
French, M., Krajewski, W., and Cuykendall, R.R. (1992). Rainfall forecasting in space and time using a neural network. J. Hydrol., 137, 1-31. http://dx.doi.org/10.1016/0022-1694(92)90046-X
-
(1992)
J. Hydrol
, vol.137
, pp. 1-31
-
-
French, M.1
Krajewski, W.2
Cuykendall, R.R.3
-
13
-
-
0029509566
-
Prediction of the summer rainfall over South Africa
-
Greischar, L., Hastenrath, S., and Heerden, J.V. (1995). Prediction of the summer rainfall over South Africa. J. Clim., 8, 1511-1518. http://dx.doi.org/10.1175/1520-0442(1995)008<1511:POTSRO>2.0.CO;2
-
(1995)
J. Clim
, vol.8
, pp. 1511-1518
-
-
Greischar, L.1
Hastenrath, S.2
Heerden, J.V.3
-
14
-
-
0842334546
-
A neural network approach to real-time rainfall estimation for Africa using satellite data
-
Grimes, D.I.F., Coppola, E., Verdecchia, M., and Visconti, G. (2003). A neural network approach to real-time rainfall estimation for Africa using satellite data. Journal of Hydrometeorology. 4, 1119-1133. http://dx.doi.org/10.1175/1525-7541(2003)004<1119:ANNATR>2.0.CO;2
-
(2003)
Journal of Hydrometeorology
, vol.4
, pp. 1119-1133
-
-
Grimes, D.I.F.1
Coppola, E.2
Verdecchia, M.3
Visconti, G.4
-
15
-
-
33646540398
-
Making better biogeographical predictions of species' distributions
-
Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J. Mc. C., Aspinall, R., and Hastie, T. (2006). Making better biogeographical predictions of species' distributions. J. Appl. Ecol., 43, 386-392. http://dx.doi.org/10.1111/j.1365-2664.2006.01164.x
-
(2006)
J. Appl. Ecol
, vol.43
, pp. 386-392
-
-
Guisan, A.1
Lehmann, A.2
Ferrier, S.3
Austin, M.4
Overton, J.M.C.5
Aspinall, R.6
Hastie, T.7
-
16
-
-
0028543366
-
Training feed-forward networks with the Marquardt algorithm
-
Hagan, M.T., and Menhaj M.B. (1994). Training feed-forward networks with the Marquardt algorithm. IEEE T. Neural Network., 5(6), 989-993. http://dx.doi.org/10.1109/72.329697
-
(1994)
IEEE T. Neural Network
, vol.5
, Issue.6
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.B.2
-
18
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks. 2, 359-366. http://dx.doi.org/10.1016/0893-6080(89)90020-8
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
19
-
-
77951872732
-
An artificial neural network model for rainfall forecasting in Bangkok, Thailand
-
Hung, N.Q., Babel, M.S., Weesakul, S., and Tripathi, N.K. (2009). An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol. Earth Syst. Sci., 13, 1413-1425. http://dx.doi.org/10.5194/hess-13-1413-2009
-
(2009)
Hydrol. Earth Syst. Sci
, vol.13
, pp. 1413-1425
-
-
Hung, N.Q.1
Babel, M.S.2
Weesakul, S.3
Tripathi, N.K.4
-
20
-
-
67651163465
-
Imputation of missing values in a precipitation-runoff process database
-
Kalteh, A.M., and Hjorth, P. (2009). Imputation of missing values in a precipitation-runoff process database. Hydrol. Res. 40(4), 420-432. http://dx.doi.org/10.2166/nh.2009.001
-
(2009)
Hydrol. Res
, vol.40
, Issue.4
, pp. 420-432
-
-
Kalteh, A.M.1
Hjorth, P.2
-
21
-
-
77954767972
-
-
First edition, Amirkabir University of Technology (Tehran Polytechnic) aut.ac.ir publications, in Persian
-
Karamoz, M., and Araginejad, S. (2006). Advanced hydrology. First edition, Amirkabir University of Technology (Tehran Polytechnic) aut.ac.ir publications; 313-351(in Persian).
-
(2006)
Advanced Hydrology
, pp. 313-351
-
-
Karamoz, M.1
Araginejad, S.2
-
22
-
-
78149406829
-
Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT stream flow simulation
-
Kim, J.W., and Pachepsky, Y.A. (2010). Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT stream flow simulation. J. Hydrol., 394, 305-314. http://dx.doi.org/10.1016/j.jhydrol.2010.09.005
-
(2010)
J. Hydrol
, vol.394
, pp. 305-314
-
-
Kim, J.W.1
Pachepsky, Y.A.2
-
23
-
-
34247208705
-
Food plant diversity as broad-scale determinant of avian frugivore richness
-
Kissling, W.D., Rahbek, C., and Böhning-Gaese, K. (2007). Food plant diversity as broad-scale determinant of avian frugivore richness. Proc. R. Soc. B., 274, 799-808. http://dx.doi.org/10.1098/rspb.2006.0311
-
(2007)
Proc. R. Soc. B
, vol.274
, pp. 799-808
-
-
Kissling, W.D.1
Rahbek, C.2
Böhning-Gaese, K.3
-
24
-
-
0000632352
-
Experiments in short-term precipitation forecasting using artificial neural networks
-
Kuligowski, R.J., and Barros, A.P. (1998). Experiments in short-term precipitation forecasting using artificial neural networks. Mon. Weather Rev., 126, 470-482. http://dx.doi.org/10.1175/1520-0493(1998)1260470:EISTPF2.0.CO;2
-
(1998)
Mon. Weather Rev
, vol.126
, pp. 470-482
-
-
Kuligowski, R.J.1
Barros, A.P.2
-
25
-
-
0027881344
-
Spatial autocorrelation: Trouble or new paradigm?
-
Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659-1673. http://dx.doi.org/10.2307/1939924
-
(1993)
Ecology
, vol.74
, pp. 1659-1673
-
-
Legendre, P.1
-
26
-
-
0000873069
-
A method for the solution of certain non-linear problems in least squares
-
Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Q. Appl. Math., 2(2), 164-168.
-
(1944)
Q. Appl. Math
, vol.2
, Issue.2
, pp. 164-168
-
-
Levenberg, K.1
-
27
-
-
22844446707
-
Infilling stream flow data using feed-forward back-propagation (BP) artificial neural networks: Application of standard BP and pseudo Mac Laurin power series BP techniques
-
Llunga, M., and Stephenson, D. (2005). Infilling stream flow data using feed-forward back-propagation (BP) artificial neural networks: Application of standard BP and pseudo Mac Laurin power series BP techniques. Water SA, 31(2), 171-176.
-
(2005)
Water SA
, vol.31
, Issue.2
, pp. 171-176
-
-
Llunga, M.1
Stephenson, D.2
-
28
-
-
0035104376
-
An application of artificial neural networks for rainfall forecasting
-
Luk, K.C., Ball, J.E., and Sharama, A. (2001). An application of artificial neural networks for rainfall forecasting. Math. Comput. Model., 33(1), 683-693. http://dx.doi.org/10.1016/S0895-7177(00)00272-7
-
(2001)
Math. Comput. Model
, vol.33
, Issue.1
, pp. 683-693
-
-
Luk, K.C.1
Ball, J.E.2
Sharama, A.3
-
29
-
-
84859066833
-
Neural network short course
-
Available at
-
Marzban, C. (2002). Neural network short course, Amer. Meteor. Soc., Available at http://www.nhn.ou.edu/marzban.
-
(2002)
Amer. Meteor. Soc
-
-
Marzban, C.1
-
30
-
-
0035484492
-
A Bayesian neural network for hail size prediction
-
Marzban, C., and Witt, A. (2001). A Bayesian neural network for hail size prediction. Weather Forecast., 16, 600-610. http://dx.doi.org/10.1175/1520-0434(2001)0160600:ABNNFS2.0.CO;2
-
(2001)
Weather Forecast
, vol.16
, pp. 600-610
-
-
Marzban, C.1
Witt, A.2
-
31
-
-
84859027667
-
-
Math Works, Inc, MATLAB: Neural Networks Toolbox (NNTOOL) User's Guide, Version 7, The Math works, Inc., Natick
-
Math Works, Inc. (2010). MATLAB: Neural Networks Toolbox (NNTOOL) User's Guide, Version 7, The Math works, Inc., Natick.
-
(2010)
-
-
-
32
-
-
0000954408
-
A neural network short-term forecast of significant thunderstorms
-
McCann, D.W. (1992). A neural network short-term forecast of significant thunderstorms. Weather Forecast., 7, 525-534. http://dx.doi.org/10.1175/1520-0434(1992)0070525:ANNSTF2.0.CO;2
-
(1992)
Weather Forecast
, vol.7
, pp. 525-534
-
-
McCann, D.W.1
-
33
-
-
84859040995
-
Precipitation modeling of Tabriz plain by artificial neural network
-
(in Persian with English abstract)
-
Mogaddam, A.A., Nourani, V., and Nadiri, A. (2009). Precipitation modeling of Tabriz plain by artificial neural network. Agriculture Sciences. 18, 1-15(in Persian with English abstract).
-
(2009)
Agriculture Sciences
, vol.18
, pp. 1-15
-
-
Mogaddam, A.A.1
Nourani, V.2
Nadiri, A.3
-
34
-
-
57949099147
-
Comparative studies in problems of missing extreme daily streamflowrecords
-
Ng, W.W., Panu, U.S., and Lennox, W.C. (2009).Comparative studies in problems of missing extreme daily streamflowrecords. J. Hydrol. Eng., 14, 91-100. http://dx.doi.org/10.1061/(ASCE)1084-0699(2009)14:1(91)
-
(2009)
J. Hydrol. Eng
, vol.14
, pp. 91-100
-
-
Ng, W.W.1
Panu, U.S.2
Lennox, W.C.3
-
35
-
-
67649122251
-
2008' An ANN-based model for spatiotemporal groundwater level forecasting
-
Reply to comment on' Nourani V, Mogaddam A.A, Nadiri A, 24, 370-371
-
Nourani, V. (2010). Reply to comment on' Nourani V, Mogaddam A.A, Nadiri A. 2008' An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process., 22, 5054-5066, 24, 370-371.
-
(2010)
Hydrol. Process
, vol.22
, pp. 5054-5066
-
-
Nourani, V.1
-
36
-
-
36148941807
-
Semi-distributed flood runoff model at the sub continental scale for southwestern Iran
-
Nourani, V., and Mano, A. (2007). Semi-distributed flood runoff model at the sub continental scale for southwestern Iran. Hydrol. Process., 21, 3173-3180. http://dx.doi.org/10.1002/hyp.6549
-
(2007)
Hydrol. Process
, vol.21
, pp. 3173-3180
-
-
Nourani, V.1
Mano, A.2
-
37
-
-
77952374286
-
An integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment process
-
Nourani, V., and Kalantari, O. (2010). An integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment process. Environ. Eng. Sci., 27(5), 411-422. http://dx.doi.org/10.1089/ees.2009.0353
-
(2010)
Environ. Eng. Sci
, vol.27
, Issue.5
, pp. 411-422
-
-
Nourani, V.1
Kalantari, O.2
-
38
-
-
61349106542
-
Combined neural-wavelet model for prediction of Ligvanchay watershed precipitation
-
Nourani, V., Alami, M.T., and Aminfar, M.H. (2009). Combined neural-wavelet model for prediction of Ligvanchay watershed precipitation. Eng. Appl. Artif. Intel., 22, 466-477. http://dx.doi.org/10.1016/j.engappai.2008.09.003
-
(2009)
Eng. Appl. Artif. Intel
, vol.22
, pp. 466-477
-
-
Nourani, V.1
Alami, M.T.2
Aminfar, M.H.3
-
39
-
-
67649122251
-
An ANN-based model for spatiotemporal groundwater level forecasting
-
Nourani, V., Mogaddam, A.A., and Nadiri, A. (2008). An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process., 22, 5054-5066. http://dx.doi.org/10.1002/hyp.7129
-
(2008)
Hydrol. Process
, vol.22
, pp. 5054-5066
-
-
Nourani, V.1
Mogaddam, A.A.2
Nadiri, A.3
-
40
-
-
79955025170
-
Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
-
Nourani, V., Kisi, O., and Komasi, M. (2011). Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol., 402(1-2), 41-59. http://dx.doi.org/10.1016/j.jhydrol.2011.03.002
-
(2011)
J. Hydrol
, vol.402
, Issue.1-2
, pp. 41-59
-
-
Nourani, V.1
Kisi, O.2
Komasi, M.3
-
41
-
-
67649111107
-
Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models
-
Rajaee, T., Mirbagheri, S.A., Zounemat-Kermani, M., and Nourani, V. (2009). Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ., 407(17), 4916-4927. http://dx.doi.org/10.1016/j.scitotenv.2009.05.016
-
(2009)
Sci. Total Environ
, vol.407
, Issue.17
, pp. 4916-4927
-
-
Rajaee, T.1
Mirbagheri, S.A.2
Zounemat-Kermani, M.3
Nourani, V.4
-
42
-
-
0029413038
-
Multivariate modelling of water resources time series using artificial neural networks
-
Raman, H., and Sunilkumar N. (1995). Multivariate modelling of water resources time series using artificial neural networks. Hydrol. Sci. J., 40(2),145-163. http://dx.doi.org/10.1080/02626669509491401
-
(1995)
Hydrol. Sci. J
, vol.40
, Issue.2
, pp. 145-163
-
-
Raman, H.1
Sunilkumar, N.2
-
43
-
-
25844451634
-
Improved weighting methods, deterministic and stochastic datadriven models for estimation of missing precipitation records
-
Ramesh, S.V., Teegavarapu, R.S.V., and Chandramouli, V. (2005). Improved weighting methods, deterministic and stochastic datadriven models for estimation of missing precipitation records. J. Hydrol., 312, 191-206. http://dx.doi.org/10.1016/j.jhydrol.2005.02.015
-
(2005)
J. Hydrol
, vol.312
, pp. 191-206
-
-
Ramesh, S.V.1
Teegavarapu, R.S.V.2
Chandramouli, V.3
-
44
-
-
10644287862
-
Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
-
Ramirez, M.C.V., Velho, H.F.C., and Ferreira, N.J. (2005). Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol., 301, 146-162. http://dx.doi.org/10.1016/j.jhydrol.2004.06.028
-
(2005)
J. Hydrol
, vol.301
, pp. 146-162
-
-
Ramirez, M.C.V.1
Velho, H.F.C.2
Ferreira, N.J.3
-
45
-
-
0003444646
-
-
Exploration in the microstructure of cognition, Foundation, 1, MIT Press
-
Rummelhart, D.E., and McClelland, J.L. (1986). Parallel distributed processing. Exploration in the microstructure of cognition, Foundation, 1, MIT Press.
-
(1986)
Parallel Distributed Processing
-
-
Rummelhart, D.E.1
McClelland, J.L.2
-
46
-
-
0000646059
-
-
D. E. Rumelhart and J. L. McCleland, eds. (Cambridge, MA: MIT Press), Chapter 8
-
Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning Internal Representations by Error Propagation, in D. E. Rumelhart and J. L. McCleland, eds. (Cambridge, MA: MIT Press), Vol. 1, Chapter 8.
-
(1986)
Learning Internal Representations By Error Propagation
, vol.1
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
47
-
-
0034127203
-
Artificial neural networks and long range precipitation prediction in California
-
Silverman, D., and Dracup, J.A. (2000). Artificial neural networks and long range precipitation prediction in California. J. Appl. Meteorol., 39, 57-66. http://dx.doi.org/10.1175/1520-0450(2000)0390057:ANNALR2.0.CO;2
-
(2000)
J. Appl. Meteorol
, vol.39
, pp. 57-66
-
-
Silverman, D.1
Dracup, J.A.2
-
48
-
-
0022694949
-
Comparing some methods of estimating mean areal rainfall
-
Singh, V.P., and Chowdhury, K. (1986). Comparing some methods of estimating mean areal rainfall. Water Resour. Bull., 222, 275-282.
-
(1986)
Water Resour. Bull
, vol.222
, pp. 275-282
-
-
Singh, V.P.1
Chowdhury, K.2
-
49
-
-
0003546704
-
-
Version 11, Englewood Cliffs, Prentice Hall
-
SPSS, Inc. (2001). SPSS for Windows User's Guide, Version 11, Englewood Cliffs, Prentice Hall.
-
(2001)
SPSS For Windows User's Guide
-
-
Spss, I.1
-
50
-
-
77953791304
-
Filling in missing peak flow data using artificial neural networks
-
Starrett, S.K., Starrett, S.K., Heier, T., Su, Y., Tuan, D., and Bandurraga, M. (2010). Filling in missing peak flow data using artificial neural networks. J. Eng. Appl. Sci., 5(1), 49-55.
-
(2010)
J. Eng. Appl. Sci
, vol.5
, Issue.1
, pp. 49-55
-
-
Starrett, S.K.1
Starrett, S.K.2
Heier, T.3
Su, Y.4
Tuan, D.5
Bandurraga, M.6
-
51
-
-
0034694775
-
Comparison of shortterm rainfall prediction models for real-time flood forecasting
-
Toth, E., Brath, A., and Montanari, V. (2000). Comparison of shortterm rainfall prediction models for real-time flood forecasting. J. Hydrol., 239, 132-147. http://dx.doi.org/10.1016/S0022-1694(00)00344-9
-
(2000)
J. Hydrol
, vol.239
, pp. 132-147
-
-
Toth, E.1
Brath, A.2
Montanari, V.3
-
52
-
-
0003529238
-
-
Ph.D. Dissertation, Harvard University, Cambridge, MA., USA
-
Werbos, P.J. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph.D. Dissertation, Harvard University, Cambridge, MA., USA.
-
(1974)
Beyond Regression: New Tools For Prediction and Analysis In the Behavioral Sciences
-
-
Werbos, P.J.1
-
53
-
-
77954384622
-
Prediction of rainfall time series using modular artificial neural networks coupled with datapreprocessing techniques
-
Wu, C.L., Chau, K.W., and Fan, C. (2010). Prediction of rainfall time series using modular artificial neural networks coupled with datapreprocessing techniques. J. Hydrol., 389, 146-167. http://dx.doi.org/10.1016/j.jhydrol.2010.05.040
-
(2010)
J. Hydrol
, vol.389
, pp. 146-167
-
-
Wu, C.L.1
Chau, K.W.2
Fan, C.3
|