메뉴 건너뛰기




Volumn 19, Issue 1, 2012, Pages 38-50

Investigating the ability of Artificial Neural Network (ANN) models to estimate missing rain-gauge data

Author keywords

Ardabel plain; Artificial neural networks; Black box model; Clustering; Rainfall forecasting

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; DATA PROCESSING; DATA SET; ERROR ANALYSIS; ESTIMATION METHOD; FORECASTING METHOD; NUMERICAL MODEL; PRECIPITATION ASSESSMENT; RAINFALL; RAINGAUGE;

EID: 84859035270     PISSN: 17262135     EISSN: 16848799     Source Type: Journal    
DOI: 10.3808/jei.201200207     Document Type: Article
Times cited : (36)

References (53)
  • 1
    • 70349436267 scopus 로고    scopus 로고
    • Artificial neural network models for forecasting intermittent monthly precipitation in arid regions
    • Aksoy, H., and Dahamsheh, A. (2009). Artificial neural network models for forecasting intermittent monthly precipitation in arid regions. Meteorol. Appl., 16, 325-337. http://dx.doi.org/10.1002/met.127
    • (2009) Meteorol. Appl , vol.16 , pp. 325-337
    • Aksoy, H.1    Dahamsheh, A.2
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, II: Hydrologic applications
    • ASCE Task Committee on the application of ANN in hydrology
    • ASCE Task Committee on the application of ANN in hydrology (2000). Artificial neural networks in hydrology, II: hydrologic applications. J. Hydrol. Eng., 5(2), 124-137.
    • (2000) J. Hydrol. Eng , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 0000437839 scopus 로고    scopus 로고
    • Prediction of extreme precipitation using a neural network: Application to summer flood occurrence in Moravia
    • Bodri, L., and Cermak, V. (2000). Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Adv. Eng. Software, 31, 311-321. http://dx.doi.org/10.1016/S0965-9978(99)00063-0
    • (2000) Adv. Eng. Software , vol.31 , pp. 311-321
    • Bodri, L.1    Cermak, V.2
  • 4
    • 47049108092 scopus 로고    scopus 로고
    • Comparative study among different neural net learning algorithms applied to rainfall time series
    • Chattopadhyay, G., and Chattopadhyay, S. (2008). Comparative study among different neural net learning algorithms applied to rainfall time series. Meteorol. Appl., 15, 273-280. http://dx.doi.org/10.1002/met.71
    • (2008) Meteorol. Appl , vol.15 , pp. 273-280
    • Chattopadhyay, G.1    Chattopadhyay, S.2
  • 5
    • 34447256610 scopus 로고    scopus 로고
    • Feed-forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India
    • Chattopadhyay, S. (2007). Feed-forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India. Acta Geophys., 55, 369-382. http://dx.doi.org/10.2478/s11600-007-0020-8
    • (2007) Acta Geophys , vol.55 , pp. 369-382
    • Chattopadhyay, S.1
  • 6
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANN in stage prediction of Shing Mun River
    • Chau, K.W. (2006). Particle swarm optimization training algorithm for ANN in stage prediction of Shing Mun River. J. Hydrol., 329 (3-4), 363-367. http://dx.doi.org/10.1016/j.jhydrol.2006.02.025
    • (2006) J. Hydrol , vol.329 , Issue.3-4 , pp. 363-367
    • Chau, K.W.1
  • 7
    • 84943231434 scopus 로고    scopus 로고
    • Real-time prediction of water stage with artificial neural network approach
    • Notes Contr. Inf
    • Chau, K.W., and Cheng, C.T. (2002). Real-time prediction of water stage with artificial neural network approach. Advances in Artificial Intelligence, Lect. Notes Contr. Inf., 2557, 715. http://dx.doi.org/10.1007/3-540-36187-1-64
    • (2002) Advances In Artificial Intelligence, Lect , pp. 715
    • Chau, K.W.1    Cheng, C.T.2
  • 8
    • 2342639070 scopus 로고    scopus 로고
    • The biogeography of invasive alien plants in California: An application of GIS and spatial regression analysis
    • Dark, S.J. (2004). The biogeography of invasive alien plants in California: an application of GIS and spatial regression analysis. Divers. Distrib., 10, 1-9. http://dx.doi.org/10.1111/j.1472-4642.2004.00054.x
    • (2004) Divers. Distrib , vol.10 , pp. 1-9
    • Dark, S.J.1
  • 9
    • 84859076664 scopus 로고    scopus 로고
    • A Comparison of methods used in estimating missing rainfall data
    • De Silva, R.P., Dayawansa N.D.K., and Ratnasiri, M.D. (2007). A Comparison of methods used in estimating missing rainfall data. J. Agric.Sci., 3(2), 101-108.
    • (2007) J. Agric. Sci , vol.3 , Issue.2 , pp. 101-108
    • de Silva, R.P.1    Dayawansa, N.D.K.2    Ratnasiri, M.D.3
  • 10
    • 0037005708 scopus 로고    scopus 로고
    • Estimation of missing stream flow data using principles of chaos theory
    • Elshorbagy, A., Simonovic, S.P., Panu, U.S. (2002).Estimation of missing stream flow data using principles of chaos theory. J. Hydrol., 255, 123-133. http://dx.doi.org/10.1016/S0022-1694(01)00513-3
    • (2002) J. Hydrol , vol.255 , pp. 123-133
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 11
    • 0000152448 scopus 로고
    • Forecasting with neural networks: An application using bankruptcy data
    • Fletcher, D., and Goss, E. (1993). Forecasting with neural networks: An application using bankruptcy data. Inform. Manage., 24, 159-167. http://dx.doi.org/10.1016/0378-7206(93)90064-Z
    • (1993) Inform. Manage , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 12
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French, M., Krajewski, W., and Cuykendall, R.R. (1992). Rainfall forecasting in space and time using a neural network. J. Hydrol., 137, 1-31. http://dx.doi.org/10.1016/0022-1694(92)90046-X
    • (1992) J. Hydrol , vol.137 , pp. 1-31
    • French, M.1    Krajewski, W.2    Cuykendall, R.R.3
  • 13
    • 0029509566 scopus 로고
    • Prediction of the summer rainfall over South Africa
    • Greischar, L., Hastenrath, S., and Heerden, J.V. (1995). Prediction of the summer rainfall over South Africa. J. Clim., 8, 1511-1518. http://dx.doi.org/10.1175/1520-0442(1995)008<1511:POTSRO>2.0.CO;2
    • (1995) J. Clim , vol.8 , pp. 1511-1518
    • Greischar, L.1    Hastenrath, S.2    Heerden, J.V.3
  • 14
    • 0842334546 scopus 로고    scopus 로고
    • A neural network approach to real-time rainfall estimation for Africa using satellite data
    • Grimes, D.I.F., Coppola, E., Verdecchia, M., and Visconti, G. (2003). A neural network approach to real-time rainfall estimation for Africa using satellite data. Journal of Hydrometeorology. 4, 1119-1133. http://dx.doi.org/10.1175/1525-7541(2003)004<1119:ANNATR>2.0.CO;2
    • (2003) Journal of Hydrometeorology , vol.4 , pp. 1119-1133
    • Grimes, D.I.F.1    Coppola, E.2    Verdecchia, M.3    Visconti, G.4
  • 15
    • 33646540398 scopus 로고    scopus 로고
    • Making better biogeographical predictions of species' distributions
    • Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J. Mc. C., Aspinall, R., and Hastie, T. (2006). Making better biogeographical predictions of species' distributions. J. Appl. Ecol., 43, 386-392. http://dx.doi.org/10.1111/j.1365-2664.2006.01164.x
    • (2006) J. Appl. Ecol , vol.43 , pp. 386-392
    • Guisan, A.1    Lehmann, A.2    Ferrier, S.3    Austin, M.4    Overton, J.M.C.5    Aspinall, R.6    Hastie, T.7
  • 16
    • 0028543366 scopus 로고
    • Training feed-forward networks with the Marquardt algorithm
    • Hagan, M.T., and Menhaj M.B. (1994). Training feed-forward networks with the Marquardt algorithm. IEEE T. Neural Network., 5(6), 989-993. http://dx.doi.org/10.1109/72.329697
    • (1994) IEEE T. Neural Network , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks. 2, 359-366. http://dx.doi.org/10.1016/0893-6080(89)90020-8
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 77951872732 scopus 로고    scopus 로고
    • An artificial neural network model for rainfall forecasting in Bangkok, Thailand
    • Hung, N.Q., Babel, M.S., Weesakul, S., and Tripathi, N.K. (2009). An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol. Earth Syst. Sci., 13, 1413-1425. http://dx.doi.org/10.5194/hess-13-1413-2009
    • (2009) Hydrol. Earth Syst. Sci , vol.13 , pp. 1413-1425
    • Hung, N.Q.1    Babel, M.S.2    Weesakul, S.3    Tripathi, N.K.4
  • 20
    • 67651163465 scopus 로고    scopus 로고
    • Imputation of missing values in a precipitation-runoff process database
    • Kalteh, A.M., and Hjorth, P. (2009). Imputation of missing values in a precipitation-runoff process database. Hydrol. Res. 40(4), 420-432. http://dx.doi.org/10.2166/nh.2009.001
    • (2009) Hydrol. Res , vol.40 , Issue.4 , pp. 420-432
    • Kalteh, A.M.1    Hjorth, P.2
  • 21
    • 77954767972 scopus 로고    scopus 로고
    • First edition, Amirkabir University of Technology (Tehran Polytechnic) aut.ac.ir publications, in Persian
    • Karamoz, M., and Araginejad, S. (2006). Advanced hydrology. First edition, Amirkabir University of Technology (Tehran Polytechnic) aut.ac.ir publications; 313-351(in Persian).
    • (2006) Advanced Hydrology , pp. 313-351
    • Karamoz, M.1    Araginejad, S.2
  • 22
    • 78149406829 scopus 로고    scopus 로고
    • Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT stream flow simulation
    • Kim, J.W., and Pachepsky, Y.A. (2010). Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT stream flow simulation. J. Hydrol., 394, 305-314. http://dx.doi.org/10.1016/j.jhydrol.2010.09.005
    • (2010) J. Hydrol , vol.394 , pp. 305-314
    • Kim, J.W.1    Pachepsky, Y.A.2
  • 23
    • 34247208705 scopus 로고    scopus 로고
    • Food plant diversity as broad-scale determinant of avian frugivore richness
    • Kissling, W.D., Rahbek, C., and Böhning-Gaese, K. (2007). Food plant diversity as broad-scale determinant of avian frugivore richness. Proc. R. Soc. B., 274, 799-808. http://dx.doi.org/10.1098/rspb.2006.0311
    • (2007) Proc. R. Soc. B , vol.274 , pp. 799-808
    • Kissling, W.D.1    Rahbek, C.2    Böhning-Gaese, K.3
  • 24
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski, R.J., and Barros, A.P. (1998). Experiments in short-term precipitation forecasting using artificial neural networks. Mon. Weather Rev., 126, 470-482. http://dx.doi.org/10.1175/1520-0493(1998)1260470:EISTPF2.0.CO;2
    • (1998) Mon. Weather Rev , vol.126 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 25
    • 0027881344 scopus 로고
    • Spatial autocorrelation: Trouble or new paradigm?
    • Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659-1673. http://dx.doi.org/10.2307/1939924
    • (1993) Ecology , vol.74 , pp. 1659-1673
    • Legendre, P.1
  • 26
    • 0000873069 scopus 로고
    • A method for the solution of certain non-linear problems in least squares
    • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Q. Appl. Math., 2(2), 164-168.
    • (1944) Q. Appl. Math , vol.2 , Issue.2 , pp. 164-168
    • Levenberg, K.1
  • 27
    • 22844446707 scopus 로고    scopus 로고
    • Infilling stream flow data using feed-forward back-propagation (BP) artificial neural networks: Application of standard BP and pseudo Mac Laurin power series BP techniques
    • Llunga, M., and Stephenson, D. (2005). Infilling stream flow data using feed-forward back-propagation (BP) artificial neural networks: Application of standard BP and pseudo Mac Laurin power series BP techniques. Water SA, 31(2), 171-176.
    • (2005) Water SA , vol.31 , Issue.2 , pp. 171-176
    • Llunga, M.1    Stephenson, D.2
  • 28
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • Luk, K.C., Ball, J.E., and Sharama, A. (2001). An application of artificial neural networks for rainfall forecasting. Math. Comput. Model., 33(1), 683-693. http://dx.doi.org/10.1016/S0895-7177(00)00272-7
    • (2001) Math. Comput. Model , vol.33 , Issue.1 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharama, A.3
  • 29
    • 84859066833 scopus 로고    scopus 로고
    • Neural network short course
    • Available at
    • Marzban, C. (2002). Neural network short course, Amer. Meteor. Soc., Available at http://www.nhn.ou.edu/marzban.
    • (2002) Amer. Meteor. Soc
    • Marzban, C.1
  • 30
    • 0035484492 scopus 로고    scopus 로고
    • A Bayesian neural network for hail size prediction
    • Marzban, C., and Witt, A. (2001). A Bayesian neural network for hail size prediction. Weather Forecast., 16, 600-610. http://dx.doi.org/10.1175/1520-0434(2001)0160600:ABNNFS2.0.CO;2
    • (2001) Weather Forecast , vol.16 , pp. 600-610
    • Marzban, C.1    Witt, A.2
  • 31
    • 84859027667 scopus 로고    scopus 로고
    • Math Works, Inc, MATLAB: Neural Networks Toolbox (NNTOOL) User's Guide, Version 7, The Math works, Inc., Natick
    • Math Works, Inc. (2010). MATLAB: Neural Networks Toolbox (NNTOOL) User's Guide, Version 7, The Math works, Inc., Natick.
    • (2010)
  • 32
    • 0000954408 scopus 로고
    • A neural network short-term forecast of significant thunderstorms
    • McCann, D.W. (1992). A neural network short-term forecast of significant thunderstorms. Weather Forecast., 7, 525-534. http://dx.doi.org/10.1175/1520-0434(1992)0070525:ANNSTF2.0.CO;2
    • (1992) Weather Forecast , vol.7 , pp. 525-534
    • McCann, D.W.1
  • 33
    • 84859040995 scopus 로고    scopus 로고
    • Precipitation modeling of Tabriz plain by artificial neural network
    • (in Persian with English abstract)
    • Mogaddam, A.A., Nourani, V., and Nadiri, A. (2009). Precipitation modeling of Tabriz plain by artificial neural network. Agriculture Sciences. 18, 1-15(in Persian with English abstract).
    • (2009) Agriculture Sciences , vol.18 , pp. 1-15
    • Mogaddam, A.A.1    Nourani, V.2    Nadiri, A.3
  • 34
    • 57949099147 scopus 로고    scopus 로고
    • Comparative studies in problems of missing extreme daily streamflowrecords
    • Ng, W.W., Panu, U.S., and Lennox, W.C. (2009).Comparative studies in problems of missing extreme daily streamflowrecords. J. Hydrol. Eng., 14, 91-100. http://dx.doi.org/10.1061/(ASCE)1084-0699(2009)14:1(91)
    • (2009) J. Hydrol. Eng , vol.14 , pp. 91-100
    • Ng, W.W.1    Panu, U.S.2    Lennox, W.C.3
  • 35
    • 67649122251 scopus 로고    scopus 로고
    • 2008' An ANN-based model for spatiotemporal groundwater level forecasting
    • Reply to comment on' Nourani V, Mogaddam A.A, Nadiri A, 24, 370-371
    • Nourani, V. (2010). Reply to comment on' Nourani V, Mogaddam A.A, Nadiri A. 2008' An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process., 22, 5054-5066, 24, 370-371.
    • (2010) Hydrol. Process , vol.22 , pp. 5054-5066
    • Nourani, V.1
  • 36
    • 36148941807 scopus 로고    scopus 로고
    • Semi-distributed flood runoff model at the sub continental scale for southwestern Iran
    • Nourani, V., and Mano, A. (2007). Semi-distributed flood runoff model at the sub continental scale for southwestern Iran. Hydrol. Process., 21, 3173-3180. http://dx.doi.org/10.1002/hyp.6549
    • (2007) Hydrol. Process , vol.21 , pp. 3173-3180
    • Nourani, V.1    Mano, A.2
  • 37
    • 77952374286 scopus 로고    scopus 로고
    • An integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment process
    • Nourani, V., and Kalantari, O. (2010). An integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment process. Environ. Eng. Sci., 27(5), 411-422. http://dx.doi.org/10.1089/ees.2009.0353
    • (2010) Environ. Eng. Sci , vol.27 , Issue.5 , pp. 411-422
    • Nourani, V.1    Kalantari, O.2
  • 38
    • 61349106542 scopus 로고    scopus 로고
    • Combined neural-wavelet model for prediction of Ligvanchay watershed precipitation
    • Nourani, V., Alami, M.T., and Aminfar, M.H. (2009). Combined neural-wavelet model for prediction of Ligvanchay watershed precipitation. Eng. Appl. Artif. Intel., 22, 466-477. http://dx.doi.org/10.1016/j.engappai.2008.09.003
    • (2009) Eng. Appl. Artif. Intel , vol.22 , pp. 466-477
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 39
    • 67649122251 scopus 로고    scopus 로고
    • An ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani, V., Mogaddam, A.A., and Nadiri, A. (2008). An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process., 22, 5054-5066. http://dx.doi.org/10.1002/hyp.7129
    • (2008) Hydrol. Process , vol.22 , pp. 5054-5066
    • Nourani, V.1    Mogaddam, A.A.2    Nadiri, A.3
  • 40
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani, V., Kisi, O., and Komasi, M. (2011). Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol., 402(1-2), 41-59. http://dx.doi.org/10.1016/j.jhydrol.2011.03.002
    • (2011) J. Hydrol , vol.402 , Issue.1-2 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 41
    • 67649111107 scopus 로고    scopus 로고
    • Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models
    • Rajaee, T., Mirbagheri, S.A., Zounemat-Kermani, M., and Nourani, V. (2009). Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ., 407(17), 4916-4927. http://dx.doi.org/10.1016/j.scitotenv.2009.05.016
    • (2009) Sci. Total Environ , vol.407 , Issue.17 , pp. 4916-4927
    • Rajaee, T.1    Mirbagheri, S.A.2    Zounemat-Kermani, M.3    Nourani, V.4
  • 42
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman, H., and Sunilkumar N. (1995). Multivariate modelling of water resources time series using artificial neural networks. Hydrol. Sci. J., 40(2),145-163. http://dx.doi.org/10.1080/02626669509491401
    • (1995) Hydrol. Sci. J , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 43
    • 25844451634 scopus 로고    scopus 로고
    • Improved weighting methods, deterministic and stochastic datadriven models for estimation of missing precipitation records
    • Ramesh, S.V., Teegavarapu, R.S.V., and Chandramouli, V. (2005). Improved weighting methods, deterministic and stochastic datadriven models for estimation of missing precipitation records. J. Hydrol., 312, 191-206. http://dx.doi.org/10.1016/j.jhydrol.2005.02.015
    • (2005) J. Hydrol , vol.312 , pp. 191-206
    • Ramesh, S.V.1    Teegavarapu, R.S.V.2    Chandramouli, V.3
  • 44
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
    • Ramirez, M.C.V., Velho, H.F.C., and Ferreira, N.J. (2005). Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol., 301, 146-162. http://dx.doi.org/10.1016/j.jhydrol.2004.06.028
    • (2005) J. Hydrol , vol.301 , pp. 146-162
    • Ramirez, M.C.V.1    Velho, H.F.C.2    Ferreira, N.J.3
  • 47
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long range precipitation prediction in California
    • Silverman, D., and Dracup, J.A. (2000). Artificial neural networks and long range precipitation prediction in California. J. Appl. Meteorol., 39, 57-66. http://dx.doi.org/10.1175/1520-0450(2000)0390057:ANNALR2.0.CO;2
    • (2000) J. Appl. Meteorol , vol.39 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 48
    • 0022694949 scopus 로고
    • Comparing some methods of estimating mean areal rainfall
    • Singh, V.P., and Chowdhury, K. (1986). Comparing some methods of estimating mean areal rainfall. Water Resour. Bull., 222, 275-282.
    • (1986) Water Resour. Bull , vol.222 , pp. 275-282
    • Singh, V.P.1    Chowdhury, K.2
  • 49
    • 0003546704 scopus 로고    scopus 로고
    • Version 11, Englewood Cliffs, Prentice Hall
    • SPSS, Inc. (2001). SPSS for Windows User's Guide, Version 11, Englewood Cliffs, Prentice Hall.
    • (2001) SPSS For Windows User's Guide
    • Spss, I.1
  • 51
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of shortterm rainfall prediction models for real-time flood forecasting
    • Toth, E., Brath, A., and Montanari, V. (2000). Comparison of shortterm rainfall prediction models for real-time flood forecasting. J. Hydrol., 239, 132-147. http://dx.doi.org/10.1016/S0022-1694(00)00344-9
    • (2000) J. Hydrol , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, V.3
  • 53
    • 77954384622 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular artificial neural networks coupled with datapreprocessing techniques
    • Wu, C.L., Chau, K.W., and Fan, C. (2010). Prediction of rainfall time series using modular artificial neural networks coupled with datapreprocessing techniques. J. Hydrol., 389, 146-167. http://dx.doi.org/10.1016/j.jhydrol.2010.05.040
    • (2010) J. Hydrol , vol.389 , pp. 146-167
    • Wu, C.L.1    Chau, K.W.2    Fan, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.