메뉴 건너뛰기




Volumn 116, Issue 14, 2010, Pages 3310-3321

Breast cancer risk estimation with artificial neural networks revisited: Discrimination and calibration

Author keywords

Breast cancer; Calibration; Computer assisted decisions; Computer assisted diagnosis; Computer assisted radiographic image interpretation; Discrimination; Neural networks; Risk assessment

Indexed keywords

ACCURACY; ADULT; AGED; AREA UNDER THE CURVE; ARTICLE; ARTIFICIAL NEURAL NETWORK; BENIGN TUMOR; BREAST CANCER; CALIBRATION; CANCER RISK; COMPUTER ASSISTED DIAGNOSIS; COMPUTER MODEL; DIAGNOSTIC ACCURACY; EVALUATION; FEMALE; HUMAN; IMAGE ANALYSIS; MAJOR CLINICAL STUDY; MALE; MALIGNANT NEOPLASTIC DISEASE; MAMMOGRAPHY; PREDICTION; PRIORITY JOURNAL; RADIOLOGIST; RECEIVER OPERATING CHARACTERISTIC; RISK ASSESSMENT; SENSITIVITY AND SPECIFICITY;

EID: 77954928071     PISSN: 0008543X     EISSN: 10970142     Source Type: Journal    
DOI: 10.1002/cncr.25081     Document Type: Article
Times cited : (104)

References (76)
  • 1
    • 0036188826 scopus 로고    scopus 로고
    • Computer-aided diagnosis in radiology
    • Giger ML. Computer-aided diagnosis in radiology. Acad Radiol. 2002;9:18-25.
    • (2002) Acad Radiol , vol.9 , pp. 18-25
    • Giger, M.L.1
  • 5
    • 84928096002 scopus 로고    scopus 로고
    • Promoting an ethical approach to unproven screening imaging tests
    • Chan EC. Promoting an ethical approach to unproven screening imaging tests. J Am Coll Radiol. 2005;2:311-320.
    • (2005) J Am Coll Radiol , vol.2 , pp. 311-320
    • Chan, E.C.1
  • 6
    • 84928096700 scopus 로고    scopus 로고
    • Informed and shared decision making: An alternative to the debate over unproven screening tests
    • Hillman BJ. Informed and shared decision making: an alternative to the debate over unproven screening tests. J Am Coll Radiol. 2005;2:297-298.
    • (2005) J Am Coll Radiol , vol.2 , pp. 297-298
    • Hillman, B.J.1
  • 7
    • 4944262722 scopus 로고    scopus 로고
    • Informed consent and communication of risk from radiological and nuclear medicine examinations: How to escape from a communication inferno
    • Picano E. Informed consent and communication of risk from radiological and nuclear medicine examinations: how to escape from a communication inferno. BMJ. 2004;329: 849-851. (Pubitemid 39388415)
    • (2004) British Medical Journal , vol.329 , Issue.7470 , pp. 849-851
    • Picano, E.1
  • 9
    • 0036184145 scopus 로고    scopus 로고
    • Relationship between Brier score and area under the binormal ROC curve
    • Ikeda M, Ishigaki T, Yamauchi K. Relationship between Brier score and area under the binormal ROC curve. Comput Methods Programs Biomed. 2002;67:187-194.
    • (2002) Comput Methods Programs Biomed , vol.67 , pp. 187-194
    • Ikeda, M.1    Ishigaki, T.2    Yamauchi, K.3
  • 10
    • 33847109797 scopus 로고    scopus 로고
    • Use and misuse of the receiver operating characteristic curve in risk prediction
    • Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007;115:928-935.
    • (2007) Circulation , vol.115 , pp. 928-935
    • Cook, N.R.1
  • 11
    • 38749137358 scopus 로고    scopus 로고
    • Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve
    • Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem. 2008; 54:17-23.
    • (2008) Clin Chem , vol.54 , pp. 17-23
    • Cook, N.R.1
  • 12
    • 22544470854 scopus 로고    scopus 로고
    • Computer-aided detection with screening mammography in a university hospital setting
    • Birdwell R, Bandodkar P, Ikeda D. Computer-aided detection with screening mammography in a university hospital setting. Radiology. 2005;236:451-457.
    • (2005) Radiology , vol.236 , pp. 451-457
    • Birdwell, R.1    Bandodkar, P.2    Ikeda, D.3
  • 13
    • 32944481413 scopus 로고    scopus 로고
    • Impact of computer-aided detection in a regional screening mammography program
    • Cupples TE, Cunningham JE, Reynolds JC. Impact of computer-aided detection in a regional screening mammography program. AJR Am J Roentgenol. 2005;185:944-950.
    • (2005) AJR Am J Roentgenol , vol.185 , pp. 944-950
    • Cupples, T.E.1    Cunningham, J.E.2    Reynolds, J.C.3
  • 14
    • 33747130105 scopus 로고    scopus 로고
    • Improved cancer detection using computer-aided detection with diagnostic and screening mammography: Prospective study of 104 cancers
    • Dean JC, Ilvento CC. Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers. AJR Am J Roentgenol. 2006;187:20-28.
    • (2006) AJR Am J Roentgenol , vol.187 , pp. 20-28
    • Dean, J.C.1    Ilvento, C.C.2
  • 15
    • 34047243811 scopus 로고    scopus 로고
    • Influence of computer-aided detection on performance of screening mammography
    • Fenton JJ, Taplin SH, Carney PA, et al. Influence of computer-aided detection on performance of screening mammography. N Engl J Med. 2007;356:1399-1409.
    • (2007) N Engl J Med , vol.356 , pp. 1399-1409
    • Fenton, J.J.1    Taplin, S.H.2    Carney, P.A.3
  • 16
    • 33746264024 scopus 로고    scopus 로고
    • Breast masses: Computer-aided diagnosis with serial mammograms
    • Hadjiiski L, Sahiner B, Helvie MA, et al. Breast masses: computer-aided diagnosis with serial mammograms. Radiology. 2006;240:343-356.
    • (2006) Radiology , vol.240 , pp. 343-356
    • Hadjiiski, L.1    Sahiner, B.2    Helvie, M.A.3
  • 17
    • 0032872797 scopus 로고    scopus 로고
    • Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: An ROC study
    • Chan HP, Sahiner B, Helvie MA, et al. Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: an ROC study. Radiology. 1999;212:817-827.
    • (1999) Radiology , vol.212 , pp. 817-827
    • Chan, H.P.1    Sahiner, B.2    Helvie, M.A.3
  • 18
    • 0036316503 scopus 로고    scopus 로고
    • Breast cancer: Effectiveness of computer-aided diagnosis - Observer study with independent database of mammograms
    • Huo Z, Giger ML, Vyborny CJ, Metz CE. Breast cancer: effectiveness of computer-aided diagnosis observer study with independent database of mammograms. Radiology. 2002;224:560-568. (Pubitemid 34809142)
    • (2002) Radiology , vol.224 , Issue.2 , pp. 560-568
    • Huo, Z.1    Giger, M.L.2    Vyborny, C.J.3    Metz, C.E.4
  • 19
    • 1242338930 scopus 로고    scopus 로고
    • Computer-aided diagnosis of mammographic microcalcification clusters
    • Kallergi M. Computer-aided diagnosis of mammographic microcalcification clusters. Med Phys. 2004;31:314-326.
    • (2004) Med Phys , vol.31 , pp. 314-326
    • Kallergi, M.1
  • 20
    • 29944438579 scopus 로고    scopus 로고
    • Comparison of independent double readings and computer-aided diagnosis (CAD) for the diagnosis of breast calcifications
    • Jiang Y, Nishikawa RM, Schmidt RA, Metz CE. Comparison of independent double readings and computer-aided diagnosis (CAD) for the diagnosis of breast calcifications. Acad Radiol. 2006;13:84-94.
    • (2006) Acad Radiol , vol.13 , pp. 84-94
    • Jiang, Y.1    Nishikawa, R.M.2    Schmidt, R.A.3    Metz, C.E.4
  • 22
    • 0026092912 scopus 로고
    • Genetic analysis of breast cancer in the cancer and steroid hormone study
    • Claus EB, Risch N, Thompson WD. Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet. 1991;48:232-242. (Pubitemid 21891587)
    • (1991) American Journal of Human Genetics , vol.48 , Issue.2 , pp. 232-242
    • Claus, E.B.1    Risch, N.2    Thompson, W.D.3
  • 23
    • 0027979310 scopus 로고
    • Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction
    • Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer. 1994;73:643-651.
    • (1994) Cancer , vol.73 , pp. 643-651
    • Claus, E.B.1    Risch, N.2    Thompson, W.D.3
  • 24
    • 33748692404 scopus 로고    scopus 로고
    • Prospective breast cancer risk prediction model for women undergoing screening mammography
    • Barlow WE, White E, Ballard-Barbash R, et al. Prospective breast cancer risk prediction model for women undergoing screening mammography. J Natl Cancer Inst. 2006;98:1204-1214.
    • (2006) J Natl Cancer Inst , vol.98 , pp. 1204-1214
    • Barlow, W.E.1    White, E.2    Ballard-Barbash, R.3
  • 25
    • 20544434176 scopus 로고    scopus 로고
    • Cancer risk prediction models: A workshop on development, evaluation, and application
    • Freedman AN, Seminara D, Gail MH, et al. Cancer risk prediction models: a workshop on development, evaluation, and application. J Natl Cancer Inst. 2005;97:715-723.
    • (2005) J Natl Cancer Inst , vol.97 , pp. 715-723
    • Freedman, A.N.1    Seminara, D.2    Gail, M.H.3
  • 26
    • 0034860859 scopus 로고    scopus 로고
    • Screening mammography with computer-aided detection: Prospective study of 12,860 patients in a community breast center
    • Freer T, Ulissey M. Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology. 2001;220:781-786. (Pubitemid 32799990)
    • (2001) Radiology , vol.220 , Issue.3 , pp. 781-786
    • Freer, T.W.1    Ulissey, M.J.2
  • 27
    • 33646124032 scopus 로고    scopus 로고
    • Screening mammograms: Interpretation with computer-aided detection - Prospective evaluation
    • Morton MJ, Whaley DH, Brandt KR, Amrami KK. Screening mammograms: interpretation with computer-aided detection - prospective evaluation. Radiology. 2006;239:375-383.
    • (2006) Radiology , vol.239 , pp. 375-383
    • Morton, M.J.1    Whaley, D.H.2    Brandt, K.R.3    Amrami, K.K.4
  • 28
    • 17644398779 scopus 로고    scopus 로고
    • Trends in recall, biopsy, and positive biopsy rates for screening mammography in an academic practice
    • Gur D, Wallace LP, Klym AH, et al. Trends in recall, biopsy, and positive biopsy rates for screening mammography in an academic practice. Radiology. 2005;235:396-401.
    • (2005) Radiology , vol.235 , pp. 396-401
    • Gur, D.1    Wallace, L.P.2    Klym, A.H.3
  • 30
    • 0030048533 scopus 로고    scopus 로고
    • Artificial neural network: Improving the quality of breast biopsy recommendations
    • Baker J, Kornguth P, Lo J, Floyd C Jr. Artificial neural network: improving the quality of breast biopsy recommendations. Radiology. 1996;198:131-135. (Pubitemid 26008254)
    • (1996) Radiology , vol.198 , Issue.1 , pp. 131-135
    • Baker, J.A.1    Kornguth, P.J.2    Lo, J.Y.3    Floyd Jr., C.E.4
  • 31
    • 0029095797 scopus 로고
    • Breast cancer: Prediction with artificial neural network based on BI-RADS standardized lexicon
    • Baker J, Kornguth P, Lo J, Williford M, Floyd C Jr. Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology. 1995;196:817-822.
    • (1995) Radiology , vol.196 , pp. 817-822
    • Baker, J.1    Kornguth, P.2    Lo, J.3    Williford, M.4    Floyd Jr., C.5
  • 32
    • 17044362334 scopus 로고    scopus 로고
    • Bayesian networks: Computer-assisted diagnosis support in radiology
    • Burnside ES. Bayesian networks: computer-assisted diagnosis support in radiology. Acad Radiol. 2005;12:422-430.
    • (2005) Acad Radiol , vol.12 , pp. 422-430
    • Burnside, E.S.1
  • 33
    • 67049160357 scopus 로고    scopus 로고
    • A probabilistic computer model developed from clinical data in the national mammography database format to classify mammography findings
    • Burnside ES, Davis J, Chhatwal J, et al. A probabilistic computer model developed from clinical data in the national mammography database format to classify mammography findings. Radiology. 2009;251:663-672.
    • (2009) Radiology , vol.251 , pp. 663-672
    • Burnside, E.S.1    Davis, J.2    Chhatwal, J.3
  • 34
    • 63849134851 scopus 로고    scopus 로고
    • A logistic regression model based on the national mammography database format to aid breast cancer diagnosis
    • Chhatwal J, Alagoz O, Lindstrom MJ, Kahn CE, Shaffer KA, Burnside ES. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. AJR Am J Roentgenol. 2009;192:1117-1127.
    • (2009) AJR Am J Roentgenol , vol.192 , pp. 1117-1127
    • Chhatwal, J.1    Alagoz, O.2    Lindstrom, M.J.3    Kahn, C.E.4    Shaffer, K.A.5    Burnside, E.S.6
  • 35
    • 0028005364 scopus 로고
    • Prediction of breast cancer malignancy using an artificial neural network
    • Floyd C Jr, Lo J, Yun A, Sullivan D, Kornguth P. Prediction of breast cancer malignancy using an artificial neural network. Cancer. 1994;74:2944-2948.
    • (1994) Cancer , vol.74 , pp. 2944-2948
    • Floyd Jr., C.1    Lo, J.2    Yun, A.3    Sullivan, D.4    Kornguth, P.5
  • 37
    • 0029380584 scopus 로고
    • Computeraided diagnosis of breast cancer: Artificial neural network approach for optimized merging of mammographic features
    • Lo JY, Baker JA, Kornguth PJ, Floyd CE Jr. Computeraided diagnosis of breast cancer: artificial neural network approach for optimized merging of mammographic features. Acad Radiol. 1995;2:841-850.
    • (1995) Acad Radiol , vol.2 , pp. 841-850
    • Lo, J.Y.1    Baker, J.A.2    Kornguth, P.J.3    Floyd Jr., C.E.4
  • 38
    • 0035073428 scopus 로고    scopus 로고
    • Use of an artificial neural network to quantitate risk of malignancy for abnormal mammograms
    • Orr RK. Use of an artificial neural network to quantitate risk of malignancy for abnormal mammograms. Surgery. 2001;129:459-466.
    • (2001) Surgery , vol.129 , pp. 459-466
    • Orr, R.K.1
  • 39
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Wu Y, Giger M, Doi K, Vyborny C, Schmidt R, Metz C. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology. 1993;187:81-87. (Pubitemid 23097863)
    • (1993) Radiology , vol.187 , Issue.1 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    Doi, K.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6
  • 40
    • 0001397621 scopus 로고    scopus 로고
    • Computer-aided diagnosis in mammography
    • Fitzpatrick JM, Milan S. Bellingham WA: SPIE
    • Giger ML, Huo Z, Kupinski MA, Vyborny CJ. Computer-aided diagnosis in mammography. In: Fitzpatrick JM, Milan S. Handbook of Medical Imaging. Vol. 2. Bellingham WA: SPIE; 2000:917-986.
    • (2000) Handbook of Medical Imaging , vol.2 , pp. 917-986
    • Giger, M.L.1    Huo, Z.2    Kupinski, M.A.3    Vyborny, C.J.4
  • 41
    • 0028041135 scopus 로고
    • Neural networks at the crossroads: Caution ahead
    • Gurney JW. Neural networks at the crossroads: caution ahead. Radiology. 1994;193:28-30.
    • (1994) Radiology , vol.193 , pp. 28-30
    • Gurney, J.W.1
  • 42
    • 33747603683 scopus 로고    scopus 로고
    • Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: Initial experience
    • Burnside ES, Rubin DL, Fine JP, Shachter RD, Sisney GA, Leung WK. Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience. Radiology. 2006; 240:666-673.
    • (2006) Radiology , vol.240 , pp. 666-673
    • Burnside, E.S.1    Rubin, D.L.2    Fine, J.P.3    Shachter, R.D.4    Sisney, G.A.5    Leung, W.K.6
  • 43
    • 0025728680 scopus 로고
    • Periodic mammographic follow-up of probably benign lesions: Results in 3,184 consecutive cases
    • Sickles EA. Periodic mammographic follow-up of probably benign lesions: results in 3,184 consecutive cases. Radiology. 1991;179:463-468.
    • (1991) Radiology , vol.179 , pp. 463-468
    • Sickles, E.A.1
  • 44
    • 0029002184 scopus 로고
    • A proposal for a national mammography database: Content, purpose, and value
    • Osuch J, Anthony M, Bassett L, et al. A proposal for a national mammography database: content, purpose, and value. AJR Am J Roentgenol. 1995;164:1329-1334.
    • (1995) AJR Am J Roentgenol , vol.164 , pp. 1329-1334
    • Osuch, J.1    Anthony, M.2    Bassett, L.3
  • 46
    • 0022471098 scopus 로고
    • Learning representations by back-propogating errors
    • Rumelhart DE, Hinton EE, Williams RJ. Learning representations by back-propogating errors. Nature. 1986;323:533.
    • (1986) Nature , vol.323 , pp. 533
    • Rumelhart, D.E.1    Hinton, E.E.2    Williams, R.J.3
  • 47
    • 0001886404 scopus 로고
    • On overfitting and the effective number of hidden units
    • Mozer A, Smolensky P, Touretzky DS, Elman JL, Weigend AS, eds. Hillsdale, NJ: Lawrence Erlbaum
    • Weigend A. On overfitting and the effective number of hidden units. In: Mozer A, Smolensky P, Touretzky DS, Elman JL, Weigend AS, eds. Proceedings of the 1993 Connectionist Models Summer School. Hillsdale, NJ: Lawrence Erlbaum; 1994:335-342.
    • (1994) Proceedings of the 1993 Connectionist Models Summer School , pp. 335-342
    • Weigend, A.1
  • 48
    • 84898932856 scopus 로고    scopus 로고
    • Overfitting in neural networks: Backpropagation, conjugate gradient, and early stopping
    • Leen TK, Dietterich TG, Tresp V, eds. Cambridge: Mass: MIT Press
    • Caruana R, Lawrence S, Giles CL. Overfitting in neural networks: backpropagation, conjugate gradient, and early stopping. In: Leen TK, Dietterich TG, Tresp V, eds. Advances in Neural Information Processing Systems 13. Cambridge: Mass: MIT Press; 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13
    • Caruana, R.1    Lawrence, S.2    Giles, C.L.3
  • 49
    • 0031370144 scopus 로고    scopus 로고
    • Lessons in neural network training: Overfitting may be harder than expected
    • American Association for Artificial Intelligence. Menlo Park, Calif: AAAI Press
    • Lawrence S, Giles CL, Tsoi AC. Lessons in neural network training: overfitting may be harder than expected. In: American Association for Artificial Intelligence. Proceedings of the Fourteenth National Conference on Artificial Intelligence. Menlo Park, Calif: AAAI Press; 1997:540-545.
    • (1997) Proceedings of the Fourteenth National Conference on Artificial Intelligence , pp. 540-545
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3
  • 53
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837-845.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 55
    • 29444446928 scopus 로고    scopus 로고
    • Two-sample test for binomial proportions for matched-pair data (McNemar's Test)
    • Rosner B, ed. Pacific Grove, Calif: Duxbury
    • Rosner B. Two-sample test for binomial proportions for matched-pair data (McNemar's Test). In: Rosner B, ed. Fundamentals of Biostatistics. Pacific Grove, Calif: Duxbury; 2000:376-384.
    • (2000) Fundamentals of Biostatistics , pp. 376-384
    • Rosner, B.1
  • 56
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is Better than Exact for Interval Estimation of Binomial Proportions
    • Agresti A, Coull BA. Approximate is better than exact for interval estimation of binomial proportions. Am Stat. 1998; 52:119-126. (Pubitemid 128487452)
    • (1998) American Statistician , vol.52 , Issue.2 , pp. 119-126
    • Agresti, A.1    Coull, B.A.2
  • 58
  • 59
    • 0026542916 scopus 로고
    • What price perfection? Calibration and discrimination of clinical prediction models
    • Diamond G. What price perfection? Calibration and discrimination of clinical prediction models. J Clin Epidemiol. 1992;45:85-89.
    • (1992) J Clin Epidemiol , vol.45 , pp. 85-89
    • Diamond, G.1
  • 61
    • 0021857146 scopus 로고
    • Regression models for prognostic prediction: Advantages, problems, and suggested solutions
    • Harrell FE Jr, Lee KL, Matchar DB, Reichert TA. Regression models for prognostic prediction: advantages, problems, and suggested solutions. Cancer Treat Rep. 1985;69:1071-1077.
    • (1985) Cancer Treat Rep , vol.69 , pp. 1071-1077
    • Harrell Jr., F.E.1    Lee, K.L.2    Matchar, D.B.3    Reichert, T.A.4
  • 62
    • 0025579695 scopus 로고
    • Why the standard view is standard: People, not machines, understand patients' problems
    • Miller RA. Why the standard view is standard: people, not machines, understand patients' problems. J Med Philos. 1990;15:581-591.
    • (1990) J Med Philos , vol.15 , pp. 581-591
    • Miller, R.A.1
  • 63
    • 0022374721 scopus 로고
    • The treatment advice of a computer-based cancer chemotherapy protocol advisor
    • Hickam DH, Shortliffe EH, Bischoff MB, Scott AC, Jacobs CD. The treatment advice of a computer-based cancer chemotherapy protocol advisor. Ann Intern Med. 1985; 103(6 pt 1):928-936.
    • (1985) Ann Intern Med , vol.103 , Issue.6 PART 1 , pp. 928-936
    • Hickam, D.H.1    Shortliffe, E.H.2    Bischoff, M.B.3    Scott, A.C.4    Jacobs, C.D.5
  • 64
    • 0022179774 scopus 로고
    • INTERNIST-I properties: Representing common sense and good medical practice in a computerized medical knowledge base
    • Masarie FE Jr, Miller RA, Myers JD. INTERNIST-I properties: representing common sense and good medical practice in a computerized medical knowledge base. Comput Biomed Res. 1985;18:458-479.
    • (1985) Comput Biomed Res , vol.18 , pp. 458-479
    • Masarie Jr., F.E.1    Miller, R.A.2    Myers, J.D.3
  • 65
    • 0020001973 scopus 로고
    • Internist-I, an experimental computer-based diagnostic consultant for general internal medicine
    • Miller RA, Pople HE Jr, Myers JD. Internist-I, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307:468-476.
    • (1982) N Engl J Med , vol.307 , pp. 468-476
    • Miller, R.A.1    Pople Jr., H.E.2    Myers, J.D.3
  • 66
    • 0022901142 scopus 로고
    • Medical expert systems-knowledge tools for physicians
    • Shortliffe EH. Medical expert systems-knowledge tools for physicians. West J Med. 1986;145:830-839.
    • (1986) West J Med , vol.145 , pp. 830-839
    • Shortliffe, E.H.1
  • 67
    • 84886614002 scopus 로고
    • Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN system
    • Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975;8:303-320.
    • (1975) Comput Biomed Res , vol.8 , pp. 303-320
    • Shortliffe, E.H.1    Davis, R.2    Axline, S.G.3    Buchanan, B.G.4    Green, C.C.5    Cohen, S.N.6
  • 71
    • 0030109008 scopus 로고    scopus 로고
    • Symbolic representation of neural networks
    • Setiono R, Liu H. Symbolic representation of neural networks. Computer. 1996;29:71-77.
    • (1996) Computer , vol.29 , pp. 71-77
    • Setiono, R.1    Liu, H.2
  • 73
    • 45849115392 scopus 로고    scopus 로고
    • Mammography facility characteristics associated with interpretive accuracy of screening mammography
    • Taplin S, Abraham L, Barlow WE, et al. Mammography facility characteristics associated with interpretive accuracy of screening mammography. J Natl Cancer Inst. 2008;100:876-887.
    • (2008) J Natl Cancer Inst , vol.100 , pp. 876-887
    • Taplin, S.1    Abraham, L.2    Barlow, W.E.3
  • 74
    • 0036182067 scopus 로고    scopus 로고
    • Interpreting data from audits when screening and diagnostic mammography outcomes are combined
    • Sohlich RE, Sickles EA, Burnside ES, Dee KE. Interpreting data from audits when screening and diagnostic mammography outcomes are combined. AJR Am J Roentgenol. 2002; 178:681-686.
    • (2002) AJR Am J Roentgenol , vol.178 , pp. 681-686
    • Sohlich, R.E.1    Sickles, E.A.2    Burnside, E.S.3    Dee, K.E.4
  • 75
    • 0034595295 scopus 로고    scopus 로고
    • Determining the quality of breast cancer care: Do tumor registries measure up?
    • Bickell NA, Chassin MR. Determining the quality of breast cancer care: do tumor registries measure up? Ann Intern Med. 2000;132:705-710.
    • (2000) Ann Intern Med , vol.132 , pp. 705-710
    • Bickell, N.A.1    Chassin, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.