메뉴 건너뛰기




Volumn 1351, Issue 1, 2015, Pages 1-10

Glia: Guardians, gluttons, or guides for the maintenance of neuronal connectivity?

Author keywords

Glia; Neurodegeneration; Synapse

Indexed keywords

MYELIN;

EID: 84941808521     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.12711     Document Type: Article
Times cited : (25)

References (94)
  • 1
    • 84896016137 scopus 로고    scopus 로고
    • The role of neuronal activity and transmitter release on synapse formation
    • Andreae, L.C. & J. Burrone 2014. The role of neuronal activity and transmitter release on synapse formation. Curr. Opin. Neurobiol. 12: 47-52.
    • (2014) Curr. Opin. Neurobiol. , vol.12 , pp. 47-52
    • Andreae, L.C.1    Burrone, J.2
  • 2
    • 84858702953 scopus 로고    scopus 로고
    • The aging cortical synapse: hallmarks and implications for cognitive decline
    • Morrison, J.H. & M.G. Baxter 2012. The aging cortical synapse: hallmarks and implications for cognitive decline. Nat. Rev. Neurosci. 13: 240-250.
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 240-250
    • Morrison, J.H.1    Baxter, M.G.2
  • 3
    • 84895950866 scopus 로고    scopus 로고
    • Communication breakdown: the impact of aging on synapse structure
    • Petralia, R.S., M.P. Mattson & P.J Yao 2014. Communication breakdown: the impact of aging on synapse structure. Aging Res. Rev. 14: 31-42.
    • (2014) Aging Res. Rev. , vol.14 , pp. 31-42
    • Petralia, R.S.1    Mattson, M.P.2    Yao, P.J.3
  • 4
    • 84876668625 scopus 로고    scopus 로고
    • Emerging roles of astrocytes in neural circuit development
    • Clarke, L.E. & B.A. Barres 2013. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14: 311-321.
    • (2013) Nat. Rev. Neurosci. , vol.14 , pp. 311-321
    • Clarke, L.E.1    Barres, B.A.2
  • 5
    • 84872176512 scopus 로고    scopus 로고
    • Microglia: new roles for the synaptic stripper
    • Kettenmann, H., F. Kirchhoff & A. Verkhratsky 2013. Microglia: new roles for the synaptic stripper. Neuron 77: 10-18.
    • (2013) Neuron , vol.77 , pp. 10-18
    • Kettenmann, H.1    Kirchhoff, F.2    Verkhratsky, A.3
  • 6
    • 84858017006 scopus 로고    scopus 로고
    • Intercellular (mis)communication in neurodegenerative disease
    • Garden, G.A. & A.R. LaSpada 2012. Intercellular (mis)communication in neurodegenerative disease. Neuron 73: 886-901.
    • (2012) Neuron , vol.73 , pp. 886-901
    • Garden, G.A.1    La Spada, A.R.2
  • 8
    • 3242803748 scopus 로고    scopus 로고
    • Invulnerability of retinal ganglion cells to NMDA excitotoxicity
    • Ullian, E.M., W.B. Barkis, S. Chen, et al. 2004. Invulnerability of retinal ganglion cells to NMDA excitotoxicity. Mol. Cell Neurosci. 26: 544-557.
    • (2004) Mol. Cell Neurosci. , vol.26 , pp. 544-557
    • Ullian, E.M.1    Barkis, W.B.2    Chen, S.3
  • 9
    • 77749301875 scopus 로고    scopus 로고
    • Glial cells promote dendrite formation and the reception of synaptic input in Purkinje cells from postnatal mice
    • Buard, I., C.C. Steinmetz, T. Claudepierre & F.W. Pfrieger 2010. Glial cells promote dendrite formation and the reception of synaptic input in Purkinje cells from postnatal mice. Glia 58: 538-545.
    • (2010) Glia , vol.58 , pp. 538-545
    • Buard, I.1    Steinmetz, C.C.2    Claudepierre, T.3    Pfrieger, F.W.4
  • 10
    • 73949159577 scopus 로고    scopus 로고
    • Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1
    • Xu, J., N. Xiao & J. Xia 2010. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat. Neurosci. 13: 22-24.
    • (2010) Nat. Neurosci. , vol.13 , pp. 22-24
    • Xu, J.1    Xiao, N.2    Xia, J.3
  • 11
    • 84870342625 scopus 로고    scopus 로고
    • Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signalling through modulation of D-serine levels in cerebral cortex neurons
    • Dinz, L.P., J.C. Almeida, V. Tortelli, et al. 2012. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signalling through modulation of D-serine levels in cerebral cortex neurons. J. Biol. Chem. 287: 41432-41445.
    • (2012) J. Biol. Chem. , vol.287 , pp. 41432-41445
    • Dinz, L.P.1    Almeida, J.C.2    Tortelli, V.3
  • 12
    • 79958128131 scopus 로고    scopus 로고
    • Specification of transplantable astroglial subtypes from human pluripotent stem cells
    • Krencik, R., J.P. Weik, Y. Liu, et al. 2011. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotech. 29: 528-545.
    • (2011) Nat. Biotech. , vol.29 , pp. 528-545
    • Krencik, R.1    Weik, J.P.2    Liu, Y.3
  • 13
    • 19444372396 scopus 로고    scopus 로고
    • Multiple mechanisms mediate cholersterol-induced synaptogensis in a CNS neuron
    • Goritz, C., D.H. Mauch & F.W. Pfrieger 2005. Multiple mechanisms mediate cholersterol-induced synaptogensis in a CNS neuron. Mol. Cell Neurosci. 29: 190-201.
    • (2005) Mol. Cell Neurosci. , vol.29 , pp. 190-201
    • Goritz, C.1    Mauch, D.H.2    Pfrieger, F.W.3
  • 14
    • 13544273916 scopus 로고    scopus 로고
    • Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis
    • Christopherson, K.S., E.M. Ullian, C.C. Stokes, et al. 2005. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120: 421-433.
    • (2005) Cell , vol.120 , pp. 421-433
    • Christopherson, K.S.1    Ullian, E.M.2    Stokes, C.C.3
  • 15
    • 80051969512 scopus 로고    scopus 로고
    • Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC
    • Kucukdereli, H., N.J. Allen, A.T. Lee, et al. 2011. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc. Natl. Acad. Sci. U.S.A. 108: 440-449.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 440-449
    • Kucukdereli, H.1    Allen, N.J.2    Lee, A.T.3
  • 16
    • 84862576493 scopus 로고    scopus 로고
    • Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors
    • Allen, N.J., M.L. Bennett, L.C. Foo, et al. 2012. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486: 410-414.
    • (2012) Nature , vol.486 , pp. 410-414
    • Allen, N.J.1    Bennett, M.L.2    Foo, L.C.3
  • 17
    • 84890547494 scopus 로고    scopus 로고
    • Astrocytes mediate synapse elimination through MGF10 and MERTK pathways
    • Chung, W.S., L.E. Clarke, G.X. Wang, et al. 2013. Astrocytes mediate synapse elimination through MGF10 and MERTK pathways. Nature 504: 394-400.
    • (2013) Nature , vol.504 , pp. 394-400
    • Chung, W.S.1    Clarke, L.E.2    Wang, G.X.3
  • 18
    • 0032247897 scopus 로고    scopus 로고
    • Astrocyte-mediated potentiation of inhibitory synaptic transmission
    • Kang, J., L.I Jiang, S.A Goldman, et al. 1998. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1: 683-692.
    • (1998) Nat. Neurosci. , vol.1 , pp. 683-692
    • Kang, J.1    Jiang, L.I.2    Goldman, S.A.3
  • 19
    • 0032171558 scopus 로고    scopus 로고
    • Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons
    • Araque, A, R.P Sanzgiri, V. Parpura, et al. 1998. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 18: 6822-6829.
    • (1998) J. Neurosci. , vol.18 , pp. 6822-6829
    • Araque, A.1    Sanzgiri, R.P.2    Parpura, V.3
  • 20
    • 0141867841 scopus 로고    scopus 로고
    • New roles for astrocytes: regulation of synaptic transmission
    • Newman, E.A. 2003. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26: 536-542.
    • (2003) Trends Neurosci , vol.26 , pp. 536-542
    • Newman, E.A.1
  • 21
    • 84887873981 scopus 로고    scopus 로고
    • Astrocyte-neuron interaction at tripartite synapses
    • Pérez-Alvarez, A. & A. Araque 2013. Astrocyte-neuron interaction at tripartite synapses. Curr. Drug Targets 14: 1220-1224.
    • (2013) Curr. Drug Targets , vol.14 , pp. 1220-1224
    • Pérez-Alvarez, A.1    Araque, A.2
  • 22
    • 80052294692 scopus 로고    scopus 로고
    • Astrocytes are endogenous regulators of basal transmission at central synapses
    • Panatier, A., J. Vallee, M. Haber, et al. 2011. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146: 785-798.
    • (2011) Cell , vol.146 , pp. 785-798
    • Panatier, A.1    Vallee, J.2    Haber, M.3
  • 23
    • 33748281357 scopus 로고    scopus 로고
    • Cooperative astrocye and dendritic spine dynamics at hippocampal excitatory synapses
    • Haber, M., L. Zhou & K.K. Murai 2006. Cooperative astrocye and dendritic spine dynamics at hippocampal excitatory synapses. J. Neurosci. 26: 8881-8891.
    • (2006) J. Neurosci. , vol.26 , pp. 8881-8891
    • Haber, M.1    Zhou, L.2    Murai, K.K.3
  • 24
    • 84880559473 scopus 로고    scopus 로고
    • Synapse location during growth depends on glia location
    • Shao, Z., S. Watanabe, R. Christensen, et al. 2013. Synapse location during growth depends on glia location. Cell 154: 337-350.
    • (2013) Cell , vol.154 , pp. 337-350
    • Shao, Z.1    Watanabe, S.2    Christensen, R.3
  • 25
    • 84891719841 scopus 로고    scopus 로고
    • Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons
    • Tasdemir-Yilmaz, O.E. & M. Freeman 2014. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev. 28: 20-33.
    • (2014) Genes Dev , vol.28 , pp. 20-33
    • Tasdemir-Yilmaz, O.E.1    Freeman, M.2
  • 26
    • 84897568022 scopus 로고    scopus 로고
    • Involvement of "stress-response" kinase pathways in Alzheimer's disease progression
    • Mairet-Coello, G. & F. Polleux 2014. Involvement of "stress-response" kinase pathways in Alzheimer's disease progression. Curr. Opin. Neurobiol. 27C: 110-117.
    • (2014) Curr. Opin. Neurobiol. , vol.27C , pp. 110-117
    • Mairet-Coello, G.1    Polleux, F.2
  • 27
    • 84879732252 scopus 로고    scopus 로고
    • Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synapse loss
    • Talantova, M., S. Sanz-Blasco, X. Zhang, et al. 2013. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synapse loss. Proc. Natl. Acad. Sci. U.S.A. 110: E2518-E2527.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E2518-E2527
    • Talantova, M.1    Sanz-Blasco, S.2    Zhang, X.3
  • 28
    • 65349119198 scopus 로고    scopus 로고
    • Emerging concepts of how β-amyloid proteins and pro-inflammatory cytokines might collaborate to produce an 'Alzheimer brain
    • Dal Pra, I., A. Chiarini, R. Pacchiana, et al. 2008. Emerging concepts of how β-amyloid proteins and pro-inflammatory cytokines might collaborate to produce an 'Alzheimer brain'. Mol. Med. Rep. 1: 173-178.
    • (2008) Mol. Med. Rep. , vol.1 , pp. 173-178
    • Dal Pra, I.1    Chiarini, A.2    Pacchiana, R.3
  • 29
    • 84879879175 scopus 로고    scopus 로고
    • Altered synapses and gliotransmission in Alzheimer's disease and AD model mice
    • Mitew, S., M.T. Kirkcaldie, T.C. Dickson & J.C. Vickers 2013. Altered synapses and gliotransmission in Alzheimer's disease and AD model mice. Neurobiol. Aging 34: 2341-2351.
    • (2013) Neurobiol. Aging , vol.34 , pp. 2341-2351
    • Mitew, S.1    Kirkcaldie, M.T.2    Dickson, T.C.3    Vickers, J.C.4
  • 30
    • 84894672176 scopus 로고    scopus 로고
    • Astrocyte-neuron interplay in maladaptive plasticity
    • Papa, M., C. DeLuca, F. Petta, et al. 2014. Astrocyte-neuron interplay in maladaptive plasticity. Neurosci. Biobehav. Rev. 42: 35-54.
    • (2014) Neurosci. Biobehav. Rev. , vol.42 , pp. 35-54
    • Papa, M.1    De Luca, C.2    Petta, F.3
  • 31
    • 77958156339 scopus 로고    scopus 로고
    • In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects
    • Faideau, M., J. Kim, K. Cormier, et al. 2010. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects. Hum. Mol. Genet. 19: 3053-3067.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 3053-3067
    • Faideau, M.1    Kim, J.2    Cormier, K.3
  • 32
    • 76049118058 scopus 로고    scopus 로고
    • Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms
    • Bradford, J, J.Y Shin, M. Roberts, et al. 2009. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl. Acad. Sci. U.S.A. 106: 22480-22485.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 22480-22485
    • Bradford, J.1    Shin, J.Y.2    Roberts, M.3
  • 33
    • 84899525577 scopus 로고    scopus 로고
    • Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice
    • Tong, X, Y. Ao, G.C. Faas, et al. 2014. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat. Neurosci. 17: 694-703.
    • (2014) Nat. Neurosci. , vol.17 , pp. 694-703
    • Tong, X.1    Ao, Y.2    Faas, G.C.3
  • 35
    • 17844404517 scopus 로고    scopus 로고
    • Microglia and neuroprotection: implications for Alzheimer's disease
    • Streit, W.J. 2005. Microglia and neuroprotection: implications for Alzheimer's disease. Brain Res. Rev. 48: 234-239.
    • (2005) Brain Res. Rev. , vol.48 , pp. 234-239
    • Streit, W.J.1
  • 36
    • 33845768784 scopus 로고    scopus 로고
    • Microglia-mediated neurotoxicity: uncovering the molecular mechanisms
    • Block, M.L., L. Zecca & J.S. Hong 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8: 57-69.
    • (2007) Nat. Rev. Neurosci. , vol.8 , pp. 57-69
    • Block, M.L.1    Zecca, L.2    Hong, J.S.3
  • 37
    • 77950363010 scopus 로고    scopus 로고
    • Mechanisms underlying inflammation in neurodegeneration
    • Glass, C.K., K. Saijo, B. Winner, et al. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918-934.
    • (2010) Cell , vol.140 , pp. 918-934
    • Glass, C.K.1    Saijo, K.2    Winner, B.3
  • 38
    • 3042798841 scopus 로고    scopus 로고
    • β-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide
    • Wang, Q., M.J. Rowan & R. Anwyl 2004. β-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J. Neurosci. 24: 6049-56.
    • (2004) J. Neurosci. , vol.24 , pp. 6049-6056
    • Wang, Q.1    Rowan, M.J.2    Anwyl, R.3
  • 39
    • 33646199097 scopus 로고    scopus 로고
    • Synaptic scaling mediated by glial TNF-α
    • Stellwagen, D. & R.C. Malenka 2006. Synaptic scaling mediated by glial TNF-α. Nature 440: 1054-1059.
    • (2006) Nature , vol.440 , pp. 1054-1059
    • Stellwagen, D.1    Malenka, R.C.2
  • 40
    • 80054905220 scopus 로고    scopus 로고
    • A role for microglia in synaptic plasticity?
    • Tremblay, M. & A.K. Majewska 2011. A role for microglia in synaptic plasticity?. Commun. Integr. Biol. 2: 220-222.
    • (2011) Commun. Integr. Biol. , vol.2 , pp. 220-222
    • Tremblay, M.1    Majewska, A.K.2
  • 41
    • 84869161077 scopus 로고    scopus 로고
    • Regulation of microglia development and homeostasis
    • Greter, M. & M. Merad 2013. Regulation of microglia development and homeostasis. Glia 61: 121-127.
    • (2013) Glia , vol.61 , pp. 121-127
    • Greter, M.1    Merad, M.2
  • 42
    • 36849076770 scopus 로고    scopus 로고
    • The classical complement cascade mediates CNS synapse elimination
    • Stevens, B., N.J. Allen, L.E. Vazquez, et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131: 1164-1178.
    • (2007) Cell , vol.131 , pp. 1164-1178
    • Stevens, B.1    Allen, N.J.2    Vazquez, L.E.3
  • 43
    • 80052633284 scopus 로고    scopus 로고
    • Synaptic pruning by microglia is necessary for normal brain development
    • Paolicelli, R.C., G. Bolasco, F. Pagani, et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333: 1456-1458.
    • (2011) Science , vol.333 , pp. 1456-1458
    • Paolicelli, R.C.1    Bolasco, G.2    Pagani, F.3
  • 44
    • 84861427387 scopus 로고    scopus 로고
    • Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner
    • Schafer, D.P., E.K. Lehrman, A.G. Kautzman, et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74: 691-705.
    • (2012) Neuron , vol.74 , pp. 691-705
    • Schafer, D.P.1    Lehrman, E.K.2    Kautzman, A.G.3
  • 45
    • 65249157852 scopus 로고    scopus 로고
    • Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals
    • Wake, H., A.J. Moorhouse, S. Jinno, et al. 2009. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29: 3974-3980.
    • (2009) J. Neurosci. , vol.29 , pp. 3974-3980
    • Wake, H.1    Moorhouse, A.J.2    Jinno, S.3
  • 46
    • 78649976052 scopus 로고    scopus 로고
    • Microglial interactions with synapses are modulated by visual experience
    • Tremblay, M.E., R.L. Lowery & A.K. Majewska 2010. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8: e1000527.
    • (2010) PLoS Biol , vol.8 , pp. e1000527
    • Tremblay, M.E.1    Lowery, R.L.2    Majewska, A.K.3
  • 47
    • 77956231165 scopus 로고    scopus 로고
    • Glia: the many ways to modulate synaptic plasticity
    • Achour, B. & O. Pascual 2010. Glia: the many ways to modulate synaptic plasticity. Neurochem. Int. 57: 440-445.
    • (2010) Neurochem. Int. , vol.57 , pp. 440-445
    • Achour, B.1    Pascual, O.2
  • 48
    • 78149449524 scopus 로고    scopus 로고
    • Regulation of synaptic connectivity by glia
    • Eroglu, C. & B.A. Barres 2010. Regulation of synaptic connectivity by glia. Nature 468: 223-231.
    • (2010) Nature , vol.468 , pp. 223-231
    • Eroglu, C.1    Barres, B.A.2
  • 49
    • 84894574217 scopus 로고    scopus 로고
    • Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor
    • Parkhurst, C.N., G. Yang, I. Ninan, et al. 2013. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155: 1596-609.
    • (2013) Cell , vol.155 , pp. 1596-1609
    • Parkhurst, C.N.1    Yang, G.2    Ninan, I.3
  • 50
    • 1442299203 scopus 로고    scopus 로고
    • The facial nerve axotomy model
    • Moran, L.B. & M.B. Graeber 2004. The facial nerve axotomy model. Brain Res. Rev. 44: 154-178.
    • (2004) Brain Res. Rev. , vol.44 , pp. 154-178
    • Moran, L.B.1    Graeber, M.B.2
  • 51
    • 33846887598 scopus 로고    scopus 로고
    • Microglial control of neuronal death and synaptic properties
    • Bessis, A., C. Bechade, D. Bernard & A. Roumier 2007. Microglial control of neuronal death and synaptic properties. Glia 55: 233-238.
    • (2007) Glia , vol.55 , pp. 233-238
    • Bessis, A.1    Bechade, C.2    Bernard, D.3    Roumier, A.4
  • 52
    • 79953297488 scopus 로고    scopus 로고
    • Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma
    • Howell, G.R., D.G. Macalinao, G.L. Sousa, et al. 2011. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J. Clin. Invest. 121: 1429-1444.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1429-1444
    • Howell, G.R.1    Macalinao, D.G.2    Sousa, G.L.3
  • 53
    • 84879429446 scopus 로고    scopus 로고
    • Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice
    • Howell, G.R., I. Soto, M. Ryan, et al. 2013. Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J. Neuroinflamm. 10: 76.
    • (2013) J. Neuroinflamm. , vol.10 , pp. 76
    • Howell, G.R.1    Soto, I.2    Ryan, M.3
  • 54
    • 78650063641 scopus 로고    scopus 로고
    • The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective
    • Perry, V.H. & V. O'Connor 2010. The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro. 2: e00047.
    • (2010) ASN Neuro. , vol.2 , pp. e00047
    • Perry, V.H.1    O'Connor, V.2
  • 55
    • 84897401619 scopus 로고    scopus 로고
    • Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase
    • Zhang, J., A. Malik, H.B. Cho, et al. 2014. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron 82: 195-207.
    • (2014) Neuron , vol.82 , pp. 195-207
    • Zhang, J.1    Malik, A.2    Cho, H.B.3
  • 56
    • 84919455244 scopus 로고    scopus 로고
    • Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain
    • Chen, Z., W. Jalabi, W. Hu, et al. 2014. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun. 22: 4486.
    • (2014) Nat. Commun. , vol.22 , pp. 4486
    • Chen, Z.1    Jalabi, W.2    Hu, W.3
  • 57
    • 42649098547 scopus 로고    scopus 로고
    • Microglial degeneration in the aging brain-bad news for neurons?
    • Streit, W.J., K.R. Miller, K.O. Lopes & E. Njie 2008. Microglial degeneration in the aging brain-bad news for neurons? Front Biosci. 13: 3423-3438.
    • (2008) Front Biosci , vol.13 , pp. 3423-3438
    • Streit, W.J.1    Miller, K.R.2    Lopes, K.O.3    Njie, E.4
  • 58
    • 84904957734 scopus 로고    scopus 로고
    • Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease
    • Baron, R., A.A. Babcock, A. Nemirovsky A, et al. 2014. Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease. Aging Cell 13: 584-595.
    • (2014) Aging Cell , vol.13 , pp. 584-595
    • Baron, R.1    Babcock, A.A.2    Nemirovsky, A.A.3
  • 59
    • 69949118284 scopus 로고    scopus 로고
    • Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease
    • Streit, W.J., H. Braak, Q.S. Xue & I. Bechmann 2009. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Acta Neuropathol. 118: 475-485.
    • (2009) Acta Neuropathol. , vol.118 , pp. 475-485
    • Streit, W.J.1    Braak, H.2    Xue, Q.S.3    Bechmann, I.4
  • 60
    • 84881490625 scopus 로고    scopus 로고
    • A dramatic increase in C1q protein in the CNS during normal aging
    • Stephan, A.H, D.V. Madison, J.M. Mateos, et al. 2014. A dramatic increase in C1q protein in the CNS during normal aging. J. Neurosci. 33: 13460-13474.
    • (2014) J. Neurosci. , vol.33 , pp. 13460-13474
    • Stephan, A.H.1    Madison, D.V.2    Mateos, J.M.3
  • 61
    • 84881251933 scopus 로고    scopus 로고
    • Microglia during development and aging
    • Harry, G.J. 2013. Microglia during development and aging. Pharmacol. Ther. 139: 313-326.
    • (2013) Pharmacol. Ther. , vol.139 , pp. 313-326
    • Harry, G.J.1
  • 62
    • 84872057940 scopus 로고    scopus 로고
    • Alzheimer Genetic Analysis Group. TREM2 variants in Alzheimer's disease
    • Guerreiro, R., A. Wojtas, J. Bras, et al. 2013. Alzheimer Genetic Analysis Group. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368: 117-127.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 117-127
    • Guerreiro, R.1    Wojtas, A.2    Bras, J.3
  • 63
    • 84891706947 scopus 로고    scopus 로고
    • CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology
    • Bradshaw, E.M., L.B. Chibnik, B.T. Keenan, et al. 2013. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nat. Neurosci. 16: 848-850.
    • (2013) Nat. Neurosci. , vol.16 , pp. 848-850
    • Bradshaw, E.M.1    Chibnik, L.B.2    Keenan, B.T.3
  • 64
    • 84870932482 scopus 로고    scopus 로고
    • Inhibition of IL-12/IL-23 signalling reduces Alzheimer's disease-like pathology and cognitive decline
    • vom Berg, J., S. Prokop, K.R. Miller, et al. 2012. Inhibition of IL-12/IL-23 signalling reduces Alzheimer's disease-like pathology and cognitive decline. Nat. Med. 18: 1812-1819.
    • (2012) Nat. Med. , vol.18 , pp. 1812-1819
    • vom Berg, J.1    Prokop, S.2    Miller, K.R.3
  • 65
    • 77649192930 scopus 로고    scopus 로고
    • Oligodendrocytes: biology and pathology
    • Bradl, M. & H. Lassmann 2010. Oligodendrocytes: biology and pathology. Acta Neuropathol. 119: 37-53.
    • (2010) Acta Neuropathol. , vol.119 , pp. 37-53
    • Bradl, M.1    Lassmann, H.2
  • 66
    • 84919427537 scopus 로고    scopus 로고
    • The emerging functions of oligodendrocytes in regulating neuronal network behaviour
    • Hoz, L.D. & M. Simons 2014. The emerging functions of oligodendrocytes in regulating neuronal network behaviour. Bioessays 37: 60-69.
    • (2014) Bioessays , vol.37 , pp. 60-69
    • Hoz, L.D.1    Simons, M.2
  • 67
    • 74949139004 scopus 로고    scopus 로고
    • Training induces changes in white matter architecture
    • Scholz, J., M.C. Klein, T.E. Behrens, et al. 2009. Training induces changes in white matter architecture. Nat. Neurosci. 12: 1370-1371.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1370-1371
    • Scholz, J.1    Klein, M.C.2    Behrens, T.E.3
  • 68
    • 84871677639 scopus 로고    scopus 로고
    • White matter structure changes as adults learn a second language
    • Schlegel, A.A., J.J. Rudelson & P.U. Tse 2012. White matter structure changes as adults learn a second language. J. Cogn. Neurosci. 24: 1664-1670.
    • (2012) J. Cogn. Neurosci. , vol.24 , pp. 1664-1670
    • Schlegel, A.A.1    Rudelson, J.J.2    Tse, P.U.3
  • 69
    • 45849106487 scopus 로고    scopus 로고
    • White matter in learning, cognition and psychiatric disorders
    • Fields, R.D. 2008. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31: 361-370.
    • (2008) Trends Neurosci , vol.31 , pp. 361-370
    • Fields, R.D.1
  • 70
    • 84908108875 scopus 로고    scopus 로고
    • Motor skill learning requires active central myelination
    • McKenzie, I.A., D. Ohayon, H. Li, et al. 2014. Motor skill learning requires active central myelination. Science 17: 318-322.
    • (2014) Science , vol.17 , pp. 318-322
    • McKenzie, I.A.1    Ohayon, D.2    Li, H.3
  • 71
    • 25144523440 scopus 로고    scopus 로고
    • Synapse-glial interactions at the vertebrate neuromuscular junction
    • Feng, Z., S. Koirala & C. Ko 2005. Synapse-glial interactions at the vertebrate neuromuscular junction. Neuroscientist 11: 503-513.
    • (2005) Neuroscientist , vol.11 , pp. 503-513
    • Feng, Z.1    Koirala, S.2    Ko, C.3
  • 72
    • 0037075180 scopus 로고    scopus 로고
    • The drosophila BMP type II receptor wishful thinking regulates neuromuscular synapse morphology and function
    • Marques, G., H. Bao, T.E. Haerry, et al. 2002. The drosophila BMP type II receptor wishful thinking regulates neuromuscular synapse morphology and function. Neuron 33: 529-543.
    • (2002) Neuron , vol.33 , pp. 529-543
    • Marques, G.1    Bao, H.2    Haerry, T.E.3
  • 73
    • 0042964820 scopus 로고    scopus 로고
    • The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the drosophila neuromuscular junction
    • McCabe, B.D., G. Marques, A.P. Haghighi, et al. 2003. The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the drosophila neuromuscular junction. Neuron 39: 241-254.
    • (2003) Neuron , vol.39 , pp. 241-254
    • McCabe, B.D.1    Marques, G.2    Haghighi, A.P.3
  • 74
    • 84894104048 scopus 로고    scopus 로고
    • Glial Wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the drosophila neuromuscular junction
    • Kerr, K.S, Y. Fuentes-Medel, C. Brewer, et al. 2014. Glial Wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the drosophila neuromuscular junction. J. Neurosci. 34: 2910-2920.
    • (2014) J. Neurosci. , vol.34 , pp. 2910-2920
    • Kerr, K.S.1    Fuentes-Medel, Y.2    Brewer, C.3
  • 75
    • 8844244112 scopus 로고    scopus 로고
    • Axon branch removal at developing synapses by axosome shedding
    • Bishop, D.L., T. Misgeld, M.K. Walsh, et al. 2004. Axon branch removal at developing synapses by axosome shedding. Neuron 44: 651-661.
    • (2004) Neuron , vol.44 , pp. 651-661
    • Bishop, D.L.1    Misgeld, T.2    Walsh, M.K.3
  • 76
    • 84891120582 scopus 로고    scopus 로고
    • Synaptic integration by NG2 cells
    • Sun, W. & D. Dietrich 2013. Synaptic integration by NG2 cells. Front. Cell. Neurosci. 20: 255.
    • (2013) Front. Cell. Neurosci. , vol.20 , pp. 255
    • Sun, W.1    Dietrich, D.2
  • 77
    • 0034636493 scopus 로고    scopus 로고
    • Glutamatergic synapses on oligodendrocytes precursor cells in the hippocampus
    • Bergles, D.E., J.D. Roberts, P. Somogyi & C.E. Jahr 2000. Glutamatergic synapses on oligodendrocytes precursor cells in the hippocampus. Nature 405: 187-191.
    • (2000) Nature , vol.405 , pp. 187-191
    • Bergles, D.E.1    Roberts, J.D.2    Somogyi, P.3    Jahr, C.E.4
  • 78
    • 19544382915 scopus 로고    scopus 로고
    • Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum
    • Lin, S.C., J.H. Huck, J.D. Roberst, et al. 2005. Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron 46: 773-785.
    • (2005) Neuron , vol.46 , pp. 773-785
    • Lin, S.C.1    Huck, J.H.2    Roberst, J.D.3
  • 79
    • 84930364803 scopus 로고    scopus 로고
    • Multiple modes of communication. between neurons and oligodendrocyte precursor cells
    • Maldonado, P.P. & M.C. Angulo 2014. Multiple modes of communication. between neurons and oligodendrocyte precursor cells. Neuroscientist DOI: 10.1177/1073858414530784.
    • (2014) Neuroscientist
    • Maldonado, P.P.1    Angulo, M.C.2
  • 80
    • 79958212485 scopus 로고    scopus 로고
    • Is neuronal communication with NG2 cells synaptic or extrasynaptic?
    • Maldonado, P.P., M. Velez-Fort & M.C. Angulo 2011. Is neuronal communication with NG2 cells synaptic or extrasynaptic? J. Anat. 219: 8-17.
    • (2011) J. Anat. , vol.219 , pp. 8-17
    • Maldonado, P.P.1    Velez-Fort, M.2    Angulo, M.C.3
  • 81
    • 84866093038 scopus 로고    scopus 로고
    • Experience-dependent regulation of NG2 progenitors in the developing barrel cortex
    • Mangin, J.M., P. Li, J. Scafidi & V. Gallo 2012. Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat. Neurosci. 15: 1192-1194.
    • (2012) Nat. Neurosci. , vol.15 , pp. 1192-1194
    • Mangin, J.M.1    Li, P.2    Scafidi, J.3    Gallo, V.4
  • 82
    • 58549095735 scopus 로고    scopus 로고
    • Dividing glial cells maintain differentiated properties including complex morphology and functional synapses
    • Ge, W.P., W. Zhou, Q. Luo, et al. 2009. Dividing glial cells maintain differentiated properties including complex morphology and functional synapses. Proc. Natl. Acad. Sci. U.S.A. 106: 328-333.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 328-333
    • Ge, W.P.1    Zhou, W.2    Luo, Q.3
  • 83
    • 77953750781 scopus 로고    scopus 로고
    • The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells
    • Kukley, M., A. Nishiyama & D. Dietrich 2010. The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J. Neurosci. 30: 8320-8331.
    • (2010) J. Neurosci. , vol.30 , pp. 8320-8331
    • Kukley, M.1    Nishiyama, A.2    Dietrich, D.3
  • 85
    • 84874288591 scopus 로고    scopus 로고
    • Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis
    • Philips, T., A. Bento-Abreu, A. Nonneman, et al. 2013. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain 136: 471-482.
    • (2013) Brain , vol.136 , pp. 471-482
    • Philips, T.1    Bento-Abreu, A.2    Nonneman, A.3
  • 86
    • 84876900163 scopus 로고    scopus 로고
    • Degeneration and impaired regeneration of grey matter oligodendrocytes in amyotrophic lateral sclerosis
    • Kang, S.H., Y. Li, M. Fukaya, I. Lorenzini, et al. 2013. Degeneration and impaired regeneration of grey matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 16: 571-579.
    • (2013) Nat. Neurosci. , vol.16 , pp. 571-579
    • Kang, S.H.1    Li, Y.2    Fukaya, M.3    Lorenzini, I.4
  • 87
    • 67649635146 scopus 로고    scopus 로고
    • Excitatory GABAergic activation of cortical dividing glial cells
    • Tanaka, Y., Y. Tozuka, T. Takata, et al. 2009. Excitatory GABAergic activation of cortical dividing glial cells. Cereb. Cortex 19: 2181-2195.
    • (2009) Cereb. Cortex , vol.19 , pp. 2181-2195
    • Tanaka, Y.1    Tozuka, Y.2    Takata, T.3
  • 88
    • 80052956973 scopus 로고    scopus 로고
    • Control of local protein synthesis and initial events in myelination by action potentials
    • Wake, H., P.R. Lee & R.D. Fields 2011. Control of local protein synthesis and initial events in myelination by action potentials. Science 333: 1647-1651.
    • (2011) Science , vol.333 , pp. 1647-1651
    • Wake, H.1    Lee, P.R.2    Fields, R.D.3
  • 89
    • 84882740468 scopus 로고    scopus 로고
    • A functional role of NMDA receptor in regulating the differentiation of oligodendrocytes precursor cells and remyelination
    • Li, C., L. Xiao, X. Liu, et al. 2013. A functional role of NMDA receptor in regulating the differentiation of oligodendrocytes precursor cells and remyelination. Glia 61: 732-749.
    • (2013) Glia , vol.61 , pp. 732-749
    • Li, C.1    Xiao, L.2    Liu, X.3
  • 90
    • 84897437047 scopus 로고    scopus 로고
    • Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease
    • Overk, C.R. & E. Masliah 2014. Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease. Biochem. Pharmacol. 88: 508-516.
    • (2014) Biochem. Pharmacol. , vol.88 , pp. 508-516
    • Overk, C.R.1    Masliah, E.2
  • 91
    • 84903781511 scopus 로고    scopus 로고
    • Mechanisms of syaptic dysfunction and excitotoxicity in Huntington's disease
    • Sepers, M.D. & L.A. Raymond 2014. Mechanisms of syaptic dysfunction and excitotoxicity in Huntington's disease. Drug Discov. Today 19: 990-996.
    • (2014) Drug Discov. Today , vol.19 , pp. 990-996
    • Sepers, M.D.1    Raymond, L.A.2
  • 92
    • 34247473080 scopus 로고    scopus 로고
    • Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model
    • Di Giorgio, F.P., M.A. Carrasco, M.C. Siao, et al. 2007. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10: 608-614.
    • (2007) Nat. Neurosci. , vol.10 , pp. 608-614
    • Di Giorgio, F.P.1    Carrasco, M.A.2    Siao, M.C.3
  • 93
    • 34247475338 scopus 로고    scopus 로고
    • Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons
    • Nagai, M., D.B. Re, T. Nagata, et al. 2007. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10: 615-622.
    • (2007) Nat. Neurosci. , vol.10 , pp. 615-622
    • Nagai, M.1    Re, D.B.2    Nagata, T.3
  • 94
    • 33749010065 scopus 로고    scopus 로고
    • Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport
    • Custer, S.K., G.A. Garden, N. Gill, et al. 2006. Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat. Neurosci. 10: 1302-1311.
    • (2006) Nat. Neurosci. , vol.10 , pp. 1302-1311
    • Custer, S.K.1    Garden, G.A.2    Gill, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.