-
1
-
-
51649094635
-
Epidemiology of Parkinson's disease
-
Alves G., et al. Epidemiology of Parkinson's disease. J. Neurol. 2008, 255(Suppl 5):18-32.
-
(2008)
J. Neurol.
, vol.255
, pp. 18-32
-
-
Alves, G.1
-
2
-
-
33745919520
-
Epidemiology of Parkinson's disease
-
De Lau L.M., Breteler M.M. Epidemiology of Parkinson's disease. Lancet Neurol. 2006, 5(6):525-535.
-
(2006)
Lancet Neurol.
, vol.5
, Issue.6
, pp. 525-535
-
-
De Lau, L.M.1
Breteler, M.M.2
-
3
-
-
0032568534
-
Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies
-
Spillantini M.G., et al. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc. Natl. Acad. Sci. U. S. A. 1998, 95(11):6469-6473.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, Issue.11
, pp. 6469-6473
-
-
Spillantini, M.G.1
-
4
-
-
0242300619
-
α-Synuclein locus triplication causes Parkinson's disease
-
Singleton A.B., et al. α-Synuclein locus triplication causes Parkinson's disease. Science 2003, 302(5646):841.
-
(2003)
Science
, vol.302
, Issue.5646
, pp. 841
-
-
Singleton, A.B.1
-
5
-
-
84873458538
-
Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder?
-
Olanow C.W., Brundin P. Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder?. Mov Disord. 2013, 28(1):31-40.
-
(2013)
Mov Disord.
, vol.28
, Issue.1
, pp. 31-40
-
-
Olanow, C.W.1
Brundin, P.2
-
6
-
-
84877968112
-
From resveratrol to its derivatives: new sources of natural antioxidant
-
He S., Yan X. From resveratrol to its derivatives: new sources of natural antioxidant. Curr. Med. Chem. 2013, 20(8):1005-1017.
-
(2013)
Curr. Med. Chem.
, vol.20
, Issue.8
, pp. 1005-1017
-
-
He, S.1
Yan, X.2
-
7
-
-
78851468985
-
Anti-inflammatory effects of resveratrol: possible role in prevention of age-related cardiovascular disease
-
Csiszar A. Anti-inflammatory effects of resveratrol: possible role in prevention of age-related cardiovascular disease. Ann. N. Y. Acad. Sci. 2011, 1215:117-122.
-
(2011)
Ann. N. Y. Acad. Sci.
, vol.1215
, pp. 117-122
-
-
Csiszar, A.1
-
8
-
-
84929743638
-
Anti-inflammatory and antifibrotic effects of resveratrol in the lung
-
Conte E., et al. Anti-inflammatory and antifibrotic effects of resveratrol in the lung. Histol. Histopathol. 2014, 30(5):523-529.
-
(2014)
Histol. Histopathol.
, vol.30
, Issue.5
, pp. 523-529
-
-
Conte, E.1
-
9
-
-
33745962138
-
Therapeutic potential of resveratrol: the in vivo evidence
-
Baur J.A., Sinclair D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 2006, 5(6):493-506.
-
(2006)
Nat. Rev. Drug Discov.
, vol.5
, Issue.6
, pp. 493-506
-
-
Baur, J.A.1
Sinclair, D.A.2
-
10
-
-
84862777886
-
Cardiovascular effects and molecular targets of resveratrol
-
Li H., Xia N., Forstermann U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 2012, 26(2):102-110.
-
(2012)
Nitric Oxide
, vol.26
, Issue.2
, pp. 102-110
-
-
Li, H.1
Xia, N.2
Forstermann, U.3
-
11
-
-
78650902065
-
Neuroprotective properties of resveratrol in different neurodegenerative disorders
-
Albani D., et al. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors 2010, 36(5):370-376.
-
(2010)
Biofactors
, vol.36
, Issue.5
, pp. 370-376
-
-
Albani, D.1
-
12
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
-
(2009)
Cell
, vol.136
, Issue.2
, pp. 215-233
-
-
Bartel, D.P.1
-
13
-
-
78549249141
-
MicroRNAs cancer and cancer stem cells
-
Zimmerman A.L., Wu S. MicroRNAs cancer and cancer stem cells. Cancer Lett. 2011, 300(1):10-19.
-
(2011)
Cancer Lett.
, vol.300
, Issue.1
, pp. 10-19
-
-
Zimmerman, A.L.1
Wu, S.2
-
14
-
-
36248948593
-
Altered microRNA expression in human heart disease
-
Ikeda S., et al. Altered microRNA expression in human heart disease. Physiol. Genomics 2007, 31(3):367-373.
-
(2007)
Physiol. Genomics
, vol.31
, Issue.3
, pp. 367-373
-
-
Ikeda, S.1
-
15
-
-
63349094897
-
Alterations of the microRNA network cause neurodegenerative disease
-
Hebert S.S., De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 2009, 32(4):199-206.
-
(2009)
Trends Neurosci.
, vol.32
, Issue.4
, pp. 199-206
-
-
Hebert, S.S.1
De Strooper, B.2
-
16
-
-
38349186896
-
MicroRNAs (miRNAs) in neurodegenerative diseases
-
Nelson P.T., Wang W.X., Rajeev B.W. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol. 2008, 18(1):130-138.
-
(2008)
Brain Pathol.
, vol.18
, Issue.1
, pp. 130-138
-
-
Nelson, P.T.1
Wang, W.X.2
Rajeev, B.W.3
-
17
-
-
84870371596
-
Role of miRNAs in neuronal differentiation from human embryonic stem cell-dericed neural stem cells
-
Liu J., et al. Role of miRNAs in neuronal differentiation from human embryonic stem cell-dericed neural stem cells. Stem Cell Rev. 2012, 8(4):1129-1137.
-
(2012)
Stem Cell Rev.
, vol.8
, Issue.4
, pp. 1129-1137
-
-
Liu, J.1
-
18
-
-
84921521998
-
Inhibition of miR-34b and miR-34c enhances alpha-synuclein expression in Parkinson's disease
-
Kabaria S., et al. Inhibition of miR-34b and miR-34c enhances alpha-synuclein expression in Parkinson's disease. FEBS Lett. 2015, 589(3):319-325.
-
(2015)
FEBS Lett.
, vol.589
, Issue.3
, pp. 319-325
-
-
Kabaria, S.1
-
20
-
-
40749145370
-
Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein
-
Wang G., et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. Am. J. Hum. Genet. 2008, 82(2):283-289.
-
(2008)
Am. J. Hum. Genet.
, vol.82
, Issue.2
, pp. 283-289
-
-
Wang, G.1
-
21
-
-
77956122651
-
Analysis of the Micro-RNA-133 and PITX3 genes in Parkinson's disease
-
De Mena L., et al. Analysis of the Micro-RNA-133 and PITX3 genes in Parkinson's disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153(6):1234-1239.
-
(2010)
Am. J. Med. Genet. B Neuropsychiatr. Genet.
, vol.153
, Issue.6
, pp. 1234-1239
-
-
De Mena, L.1
-
22
-
-
84902675832
-
Increased striatal adenosine A 2A receptor levels is an early event in Parkinson's disease-related pathology and it is potentially regulated by miR-34b
-
Villar-Menéndez I., et al. Increased striatal adenosine A 2A receptor levels is an early event in Parkinson's disease-related pathology and it is potentially regulated by miR-34b. Neurobiol. Dis. 2014, 69:206-214.
-
(2014)
Neurobiol. Dis.
, vol.69
, pp. 206-214
-
-
Villar-Menéndez, I.1
-
23
-
-
0037184675
-
Resveratrol protects against global cerebral ischemic injury in gerbils
-
Wang Q., et al. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. 2002, 958(2):439-447.
-
(2002)
Brain Res.
, vol.958
, Issue.2
, pp. 439-447
-
-
Wang, Q.1
-
24
-
-
77955088481
-
Resveratrol as a therapeutic agent for neurodegenerative diseases
-
Sun A.Y., et al. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol. 2010, 41(2-3):375-383.
-
(2010)
Mol. Neurobiol.
, vol.41
, Issue.2-3
, pp. 375-383
-
-
Sun, A.Y.1
-
25
-
-
49849091089
-
Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice
-
Blanchet J., et al. Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32(5):1243-1250.
-
(2008)
Prog. Neuropsychopharmacol. Biol. Psychiatry
, vol.32
, Issue.5
, pp. 1243-1250
-
-
Blanchet, J.1
-
26
-
-
84898986648
-
Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson's-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses
-
Lofrumento D.D., et al. Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson's-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun. 2014, 20(3):249-260.
-
(2014)
Innate Immun.
, vol.20
, Issue.3
, pp. 249-260
-
-
Lofrumento, D.D.1
-
27
-
-
84866702836
-
α-Synuclein in Parkinson's disease
-
Stefanis L. α-Synuclein in Parkinson's disease. CSH Perspect Med. 2012, 2(2):a009399.
-
(2012)
CSH Perspect Med.
, vol.2
, Issue.2
, pp. a009399
-
-
Stefanis, L.1
-
28
-
-
68949206606
-
The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide
-
Albani D., et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J. Neurochem. 2009, 110(5):1445-1456.
-
(2009)
J. Neurochem.
, vol.110
, Issue.5
, pp. 1445-1456
-
-
Albani, D.1
-
29
-
-
80052359850
-
Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease
-
Wu Y.et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neuro-Signals 2011, 19(3):163.
-
(2011)
Neuro-Signals
, vol.19
, Issue.3
, pp. 163
-
-
Wu, Y.A.1
-
30
-
-
39049086391
-
MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN
-
Yang H., et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008, 68(2):425-433.
-
(2008)
Cancer Res.
, vol.68
, Issue.2
, pp. 425-433
-
-
Yang, H.1
-
31
-
-
78549293104
-
Dysregulation of miR-15a and miR-214 in human pancreatic cancer
-
46
-
Zhang X.J., et al. Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J. Hematol. Oncol. 2010, 3:46. 46.
-
(2010)
J. Hematol. Oncol.
, vol.3
, pp. 46
-
-
Zhang, X.J.1
-
32
-
-
84872094361
-
MiR-214 targets ATF4 to inhibit bone formation
-
Wang X., et al. miR-214 targets ATF4 to inhibit bone formation. Nat. Med. 2013, 19(1):93-100.
-
(2013)
Nat. Med.
, vol.19
, Issue.1
, pp. 93-100
-
-
Wang, X.1
-
33
-
-
84880475762
-
Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells
-
Van Balkom B.W., et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 2013, 121(19):3997-4006.
-
(2013)
Blood
, vol.121
, Issue.19
, pp. 3997-4006
-
-
Van Balkom, B.W.1
-
34
-
-
71749092463
-
MicroRNAs: novel therapeutic targets in neurodegenerative diseases
-
Roshan R., et al. MicroRNAs: novel therapeutic targets in neurodegenerative diseases. Drug Discov. Today 2009, 14(23-24):1123-1129.
-
(2009)
Drug Discov. Today
, vol.14
, Issue.23-24
, pp. 1123-1129
-
-
Roshan, R.1
-
35
-
-
77950859070
-
MiR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro
-
Chen H., et al. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem. Biophys. Res. Commun. 2010, 394(4):921-927.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.394
, Issue.4
, pp. 921-927
-
-
Chen, H.1
-
36
-
-
77951249562
-
Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153
-
Doxakis E. Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. J. Biol. Chem. 2010, 285(17):12726-12734.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.17
, pp. 12726-12734
-
-
Doxakis, E.1
|