메뉴 건너뛰기




Volumn 14, Issue 9, 2015, Pages 884-897

Auxotrophic mutations reduce tolerance of Saccharomyces cerevisiae to very high levels of ethanol stress

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOL; AMINO ACID; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84940671373     PISSN: 15359778     EISSN: None     Source Type: Journal    
DOI: 10.1128/EC.00053-15     Document Type: Article
Times cited : (24)

References (66)
  • 1
    • 0022518776 scopus 로고
    • Ethanol tolerance in yeasts
    • Casey GP, Ingledew WM. 1986. Ethanol tolerance in yeasts. Crit Rev Microbiol 13:219–280. http://dx.doi.org/10.3109/10408418609108739
    • (1986) Crit Rev Microbiol , vol.13 , pp. 219-280
    • Casey, G.P.1    Ingledew, W.M.2
  • 2
    • 1542359000 scopus 로고    scopus 로고
    • Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains
    • Garay-Arroyo A, Covarrubias AA, Clark I, Nino I, Gosset G, Martinez A. 2004. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63:734–741. http://dx.doi.org/10.1007/s00253-003-1414-4
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 734-741
    • Garay-Arroyo, A.1    Covarrubias, A.A.2    Clark, I.3    Nino, I.4    Gosset, G.5    Martinez, A.6
  • 3
    • 54049109254 scopus 로고    scopus 로고
    • Yeast selection for fuel ethanol production in Brazil
    • Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML. 2008. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163. http://dx.doi.org/10.1111/j.1567-1364.2008.00428.x.
    • (2008) FEMS Yeast Res , vol.8 , pp. 1155-1163
    • Basso, L.C.1    De Amorim, H.V.2    De Oliveira, A.J.3    Lopes, M.L.4
  • 4
    • 0001109415 scopus 로고
    • Sake-brewing yeast
    • In Rose AH, Harrison JS, Academic Press, London, United Kingdom
    • Kodama K. 1993. Sake-brewing yeast, p 129–168. In Rose AH, Harrison JS (ed), The yeasts, vol 3. Academic Press, London, United Kingdom.
    • (1993) The Yeasts , vol.3 , pp. 129-168
    • Kodama, K.1
  • 5
    • 0034789483 scopus 로고    scopus 로고
    • Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses
    • Beney L, Gervais P. 2001. Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl Microbiol Biotechnol 57:34–42. http://dx.doi.org/10.1007/s002530100754
    • (2001) Appl Microbiol Biotechnol , vol.57 , pp. 34-42
    • Beney, L.1    Gervais, P.2
  • 6
    • 0030606016 scopus 로고    scopus 로고
    • Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes
    • Weber FJ, de Bont JA. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245. http://dx.doi.org/10.1016/S0304-4157(96)00010-X.
    • (1996) Biochim Biophys Acta , vol.1286 , pp. 225-245
    • Weber, F.J.1    De Bont, J.A.2
  • 7
    • 0027997987 scopus 로고
    • Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata
    • Alexandre H, Rousseaux I, Charpentier C. 1994. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett 124:17–22. http://dx.doi.org/10.1111/j.1574-6968.1994.tb07255.x.
    • (1994) FEMS Microbiol Lett , vol.124 , pp. 17-22
    • Alexandre, H.1    Rousseaux, I.2    Charpentier, C.3
  • 8
    • 0017857332 scopus 로고
    • Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae
    • Thomas DS, Hossack JA, Rose AH. 1978. Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch Microbiol 117:239–245. http://dx.doi.org/10.1007/BF00738541
    • (1978) Arch Microbiol , vol.117 , pp. 239-245
    • Thomas, D.S.1    Hossack, J.A.2    Rose, A.H.3
  • 9
    • 0037337660 scopus 로고    scopus 로고
    • Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content
    • You KM, Rosenfield CL, Knipple DC. 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503. http://dx.doi.org/10.1128/AEM.69.3.1499-1503.2003
    • (2003) Appl Environ Microbiol , vol.69 , pp. 1499-1503
    • You, K.M.1    Rosenfield, C.L.2    Knipple, D.C.3
  • 10
    • 0031765475 scopus 로고    scopus 로고
    • Stress tolerance in a yeast sterol auxotroph: Role of ergosterol, heat shock proteins and trehalose
    • Swan TM, Watson K. 1998. Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol Lett 169:191–197. http://dx.doi.org/10.1111/j.1574-6968.1998.tb13317.x.
    • (1998) FEMS Microbiol Lett , vol.169 , pp. 191-197
    • Swan, T.M.1    Watson, K.2
  • 11
    • 29144482938 scopus 로고    scopus 로고
    • Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae
    • Takagi H, Takaoka M, Kawaguchi A, Kubo Y. 2005. Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8656–8662. http://dx.doi.org/10.1128/AEM.71.12.8656-8662.2005
    • (2005) Appl Environ Microbiol , vol.71 , pp. 8656-8662
    • Takagi, H.1    Takaoka, M.2    Kawaguchi, A.3    Kubo, Y.4
  • 12
    • 0021825079 scopus 로고
    • Membrane stabilization during freezing: The role of two natural cryoprotectants, trehalose and proline
    • Rudolph AS, Crowe JH. 1985. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367–377. http://dx.doi.org/10.1016/0011-2240(85)90184-1
    • (1985) Cryobiology , vol.22 , pp. 367-377
    • Rudolph, A.S.1    Crowe, J.H.2
  • 14
    • 34447281116 scopus 로고    scopus 로고
    • Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis
    • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S. 2007. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44. http://dx.doi.org/10.1016/j.jbiotec.2007.05.010
    • (2007) J Biotechnol , vol.131 , pp. 34-44
    • Hirasawa, T.1    Yoshikawa, K.2    Nakakura, Y.3    Nagahisa, K.4    Furusawa, C.5    Katakura, Y.6    Shimizu, H.7    Shioya, S.8
  • 15
    • 0036249933 scopus 로고    scopus 로고
    • Auxotrophic yeast strains in fundamental and applied research
    • Pronk JT. 2002. Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68:2095–2100. http://dx.doi.org/10.1128/AEM.68.5.2095-2100.2002
    • (2002) Appl Environ Microbiol , vol.68 , pp. 2095-2100
    • Pronk, J.T.1
  • 16
    • 0032841325 scopus 로고    scopus 로고
    • Metabolic engineering of yeast: The perils of auxotrophic hosts
    • Cakar ZP, Sauer U, Bailey JE. 1999. Metabolic engineering of yeast: the perils of auxotrophic hosts. Biotechnol Lett 21:611–616. http://dx.doi.org/10.1023/A:1005576004215
    • (1999) Biotechnol Lett , vol.21 , pp. 611-616
    • Cakar, Z.P.1    Sauer, U.2    Bailey, J.E.3
  • 17
    • 69549083476 scopus 로고    scopus 로고
    • Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae
    • Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S. 2009. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 50:301–310. http://dx.doi.org/10.1007/BF03195688
    • (2009) J Appl Genet , vol.50 , pp. 301-310
    • Auesukaree, C.1    Damnernsawad, A.2    Kruatrachue, M.3    Pokethitiyook, P.4    Boonchird, C.5    Kaneko, Y.6    Harashima, S.7
  • 18
    • 33745886222 scopus 로고    scopus 로고
    • The genome- wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols
    • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H. 2006. The genome- wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750. http://dx.doi.org/10.1111/j.1567-1364.2006.00040.x.
    • (2006) FEMS Yeast Res , vol.6 , pp. 744-750
    • Fujita, K.1    Matsuyama, A.2    Kobayashi, Y.3    Iwahashi, H.4
  • 19
    • 0021668356 scopus 로고
    • Effects of alcohols on micro-organisms
    • Ingram LO, Buttke TM. 1984. Effects of alcohols on micro-organisms. Adv Microb Physiol 25:253–300
    • (1984) Adv Microb Physiol , vol.25 , pp. 253-300
    • Ingram, L.O.1    Buttke, T.M.2
  • 21
    • 0000871353 scopus 로고
    • Tolerance of fungi to ethanol
    • In JenningsDH, Marcel Dekker, New York, NY
    • Mishra P. 1993. Tolerance of fungi to ethanol, p 189–208. In JenningsDH (ed), Stress tolerance of fungi. Marcel Dekker, New York, NY.
    • (1993) Stress Tolerance of Fungi , pp. 189-208
    • Mishra, P.1
  • 22
    • 70149116132 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol
    • Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I. 2009. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75:5761–5772. http://dx.doi.org/10.1128/AEM.00845-09
    • (2009) Appl Environ Microbiol , vol.75 , pp. 5761-5772
    • Teixeira, M.C.1    Raposo, L.R.2    Mira, N.P.3    Lourenco, A.B.4    Sa-Correia, I.5
  • 23
    • 33646336879 scopus 로고    scopus 로고
    • Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress
    • van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A. 2006. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359. http://dx.doi.org/10.1002/yea.1359
    • (2006) Yeast , vol.23 , pp. 351-359
    • Van Voorst, F.1    Houghton-Larsen, J.2    Jonson, L.3    Kielland-Brandt, M.C.4    Brandt, A.5
  • 24
    • 58149337066 scopus 로고    scopus 로고
    • Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae
    • Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H. 2009. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9:32–44. http://dx.doi.org/10.1111/j.1567-1364.2008.00456.x.
    • (2009) FEMS Yeast Res , vol.9 , pp. 32-44
    • Yoshikawa, K.1    Tanaka, T.2    Furusawa, C.3    Nagahisa, K.4    Hirasawa, T.5    Shimizu, H.6
  • 25
    • 77953578881 scopus 로고    scopus 로고
    • The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae
    • Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA. 2010. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24. http://dx.doi.org/10.1111/j.1365-2672.2009.04657.x.
    • (2010) J Appl Microbiol , vol.109 , pp. 13-24
    • Stanley, D.1    Bandara, A.2    Fraser, S.3    Chambers, P.J.4    Stanley, G.A.5
  • 28
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132. http://dx.doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204<3.0.CO;2-2
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7
  • 29
    • 0031464418 scopus 로고    scopus 로고
    • Cloning-free PCR-based allele replacement methods
    • Erdeniz N, Mortensen UH, Rothstein R. 1997. Cloning-free PCR-based allele replacement methods. Genome Res 7:1174–1183
    • (1997) Genome Res , vol.7 , pp. 1174-1183
    • Erdeniz, N.1    Mortensen, U.H.2    Rothstein, R.3
  • 30
    • 0025978950 scopus 로고
    • Micromanipulation and dissection of asci
    • Sherman F, Hicks J. 1991. Micromanipulation and dissection of asci. Methods Enzymol 194:21–37. http://dx.doi.org/10.1016/0076-6879(91)94005-W.
    • (1991) Methods Enzymol , vol.194 , pp. 21-37
    • Sherman, F.1    Hicks, J.2
  • 31
    • 44949267924 scopus 로고
    • Rapid assessment of S. Cerevisiae mating type by PCR
    • Huxley C, Green ED, Dunham I. 1990. Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 6:236. http://dx.doi.org/10.1016/0168-9525(90)90190-H.
    • (1990) Trends Genet , vol.6 , pp. 236
    • Huxley, C.1    Green, E.D.2    Dunham, I.3
  • 32
    • 27544473473 scopus 로고    scopus 로고
    • Quantitative trait loci analysis using the false discovery rate
    • Benjamini Y, Yekutieli D. 2005. Quantitative trait loci analysis using the false discovery rate. Genetics 171:783–790. http://dx.doi.org/10.1534/genetics.104.036699
    • (2005) Genetics , vol.171 , pp. 783-790
    • Benjamini, Y.1    Yekutieli, D.2
  • 33
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding
    • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3
    • (1976) Anal Biochem , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 35
    • 34249053477 scopus 로고    scopus 로고
    • Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae
    • Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW. 2007. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175:1479–1487
    • (2007) Genetics , vol.175 , pp. 1479-1487
    • Hu, X.H.1    Wang, M.H.2    Tan, T.3    Li, J.R.4    Yang, H.5    Leach, L.6    Zhang, R.M.7    Luo, Z.W.8
  • 36
    • 84857050299 scopus 로고    scopus 로고
    • Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae
    • Swinnen S, Thevelein JM, Nevoigt E. 2012. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 12: 215–227. http://dx.doi.org/10.1111/j.1567-1364.2011.00777.x.
    • (2012) FEMS Yeast Res , vol.12 , pp. 215-227
    • Swinnen, S.1    Thevelein, J.M.2    Nevoigt, E.3
  • 37
    • 84866170772 scopus 로고    scopus 로고
    • Advances in quantitative trait analysis in yeast
    • Liti G, Louis EJ. 2012. Advances in quantitative trait analysis in yeast. PLoS Genet 8:e1002912. http://dx.doi.org/10.1371/journal.pgen.1002912
    • (2012) Plos Genet , vol.8
    • Liti, G.1    Louis, E.J.2
  • 41
    • 28444467392 scopus 로고    scopus 로고
    • Quantitative trait loci mapped to single-nucleotide resolution in yeast
    • Deutschbauer AM, Davis RW. 2005. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet 37:1333–1340. http://dx.doi.org/10.1038/ng1674
    • (2005) Nat Genet , vol.37 , pp. 1333-1340
    • Deutschbauer, A.M.1    Davis, R.W.2
  • 42
    • 0037177625 scopus 로고    scopus 로고
    • Genetic dissection of transcriptional regulation in budding yeast
    • Brem RB, Yvert G, Clinton R, Kruglyak L. 2002. Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755. http://dx.doi.org/10.1126/science.1069516
    • (2002) Science , vol.296 , pp. 752-755
    • Brem, R.B.1    Yvert, G.2    Clinton, R.3    Kruglyak, L.4
  • 43
    • 34547906098 scopus 로고    scopus 로고
    • Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains
    • Marullo P, Aigle M, Bely M, Masneuf-Pomarede I, Durrens P, Dubourdieu D, Yvert G. 2007. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res 7:941–952. http://dx.doi.org/10.1111/j.1567-1364.2007.00252.x.
    • (2007) FEMS Yeast Res , vol.7 , pp. 941-952
    • Marullo, P.1    Aigle, M.2    Bely, M.3    Masneuf-Pomarede, I.4    Durrens, P.5    Dubourdieu, D.6    Yvert, G.7
  • 45
    • 84879626192 scopus 로고    scopus 로고
    • Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast
    • Pais TM, Foulquie-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM. 2013. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet 9:e1003548. http://dx.doi.org/10.1371/journal.pgen.1003548
    • (2013) Plos Genet , vol.9
    • Pais, T.M.1    Foulquie-Moreno, M.R.2    Hubmann, G.3    Duitama, J.4    Swinnen, S.5    Goovaerts, A.6    Yang, Y.7    Dumortier, F.8    Thevelein, J.M.9
  • 47
    • 84878695412 scopus 로고    scopus 로고
    • Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation
    • Hubmann G, Mathe L, Foulquie-Moreno MR, Duitama J, Nevoigt E, Thevelein JM. 2013. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Biotechnol Biofuels 6:87. http://dx.doi.org/10.1186/1754-6834-6-87
    • (2013) Biotechnol Biofuels , vol.6
    • Hubmann, G.1    Mathe, L.2    Foulquie-Moreno, M.R.3    Duitama, J.4    Nevoigt, E.5    Thevelein, J.M.6
  • 48
    • 84884660819 scopus 로고    scopus 로고
    • QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing
    • Yang Y, Foulquie-Moreno MR, Clement L, Erdei E, Tanghe A, Schaerlaekens K, Dumortier F, Thevelein JM. 2013. QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing. PLoS Genet 9:e1003693. http://dx.doi.org/10.1371/journal.pgen.1003693
    • (2013) Plos Genet , vol.9
    • Yang, Y.1    Foulquie-Moreno, M.R.2    Clement, L.3    Erdei, E.4    Tanghe, A.5    Schaerlaekens, K.6    Dumortier, F.7    Thevelein, J.M.8
  • 49
    • 0024537232 scopus 로고
    • Effect of the chronic ethanol action on the activity of the general amino-acid permease from Saccharomyces cerevisiae var. Ellipsoideus
    • Ferreras JM, Iglesias R, Girbes T. 1989. Effect of the chronic ethanol action on the activity of the general amino-acid permease from Saccharomyces cerevisiae var. ellipsoideus. Biochim Biophys Acta 979:375–377. http://dx.doi.org/10.1016/0005-2736(89)90260-5
    • (1989) Biochim Biophys Acta , vol.979 , pp. 375-377
    • Ferreras, J.M.1    Iglesias, R.2    Girbes, T.3
  • 50
    • 0021760550 scopus 로고
    • Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae
    • Leao C, Van Uden N. 1984. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 774:43–48. http://dx.doi.org/10.1016/0005-2736(84)90272-4
    • (1984) Biochim Biophys Acta , vol.774 , pp. 43-48
    • Leao, C.1    Van Uden, N.2
  • 51
    • 0031912520 scopus 로고    scopus 로고
    • Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae
    • Casal M, Cardoso H, Leao C. 1998. Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae. Appl Environ Microbiol 64:665–668
    • (1998) Appl Environ Microbiol , vol.64 , pp. 665-668
    • Casal, M.1    Cardoso, H.2    Leao, C.3
  • 52
    • 0028855748 scopus 로고
    • Effects of ethanol and acetic acid on the transport of malic acid and glucose in the yeast Schizosaccharomyces pombe: Implications in wine deacidification
    • Sousa MJ, Mota M, Leao C. 1995. Effects of ethanol and acetic acid on the transport of malic acid and glucose in the yeast Schizosaccharomyces pombe: implications in wine deacidification. FEMS Microbiol Lett 126: 197–202. http://dx.doi.org/10.1111/j.1574-6968.1995.tb07416.x.
    • (1995) FEMS Microbiol Lett , vol.126 , pp. 197-202
    • Sousa, M.J.1    Mota, M.2    Leao, C.3
  • 53
    • 0019368751 scopus 로고
    • Ethanol-induced inhibition of glucose transport across the isolated brush-border membrane of hamster jejunum
    • Dinda PK, Beck IT. 1981. Ethanol-induced inhibition of glucose transport across the isolated brush-border membrane of hamster jejunum. Dig Dis Sci 26:23–32. http://dx.doi.org/10.1007/BF01307972
    • (1981) Dig Dis Sci , vol.26 , pp. 23-32
    • Dinda, P.K.1    Beck, I.T.2
  • 54
    • 0019863098 scopus 로고
    • Inhibition of Na -stimulated glucose transport function and perturbation of intestinal microvillus membrane vesicles by ethanol and acetaldehyde
    • Tillotson LG, Carter EA, Inui KI, Isselbacher KJ. 1981. Inhibition of Na -stimulated glucose transport function and perturbation of intestinal microvillus membrane vesicles by ethanol and acetaldehyde. Arch Biochem Biophys 207:360–370. http://dx.doi.org/10.1016/0003-9861(81)90043-6
    • (1981) Arch Biochem Biophys , vol.207 , pp. 360-370
    • Tillotson, L.G.1    Carter, E.A.2    Inui, K.I.3    Isselbacher, K.J.4
  • 55
    • 0023871832 scopus 로고
    • Primary structure of the uracil transport protein of Saccharomyces cerevisiae
    • Jund R, Weber E, Chevallier MR. 1988. Primary structure of the uracil transport protein of Saccharomyces cerevisiae. Eur J Biochem 171:417–424. http://dx.doi.org/10.1111/j.1432-1033.1988.tb13806.x.
    • (1988) Eur J Biochem , vol.171 , pp. 417-424
    • Jund, R.1    Weber, E.2    Chevallier, M.R.3
  • 56
    • 0033396550 scopus 로고    scopus 로고
    • Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae
    • Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S. 1999. Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328. http://dx.doi.org/10.1007/s002940050506
    • (1999) Curr Genet , vol.36 , pp. 317-328
    • Regenberg, B.1    During-Olsen, L.2    Kielland-Brandt, M.C.3    Holmberg, S.4
  • 57
    • 77953871404 scopus 로고    scopus 로고
    • Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient- limitation
    • Basso TO, Dario MG, Tonso A, Stambuk BU, Gombert AK. 2010. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient- limitation. Biotechnol Lett 32:973–977. http://dx.doi.org/10.1007/s10529-010-0248-2
    • (2010) Biotechnol Lett , vol.32 , pp. 973-977
    • Basso, T.O.1    Dario, M.G.2    Tonso, A.3    Stambuk, B.U.4    Gombert, A.K.5
  • 58
    • 38349086957 scopus 로고    scopus 로고
    • Use of the TRP1 auxotrophic marker for gene disruption and phenotypic analysis in yeast: A note of warning
    • Gonzalez A, Larroy C, Biosca JA, Arino J. 2008. Use of the TRP1 auxotrophic marker for gene disruption and phenotypic analysis in yeast: a note of warning. FEMS Yeast Res 8:2–5. http://dx.doi.org/10.1111/j.1567-1364.2007.00315.x.
    • (2008) FEMS Yeast Res , vol.8 , pp. 2-5
    • Gonzalez, A.1    Larroy, C.2    Biosca, J.A.3    Arino, J.4
  • 60
    • 34447510035 scopus 로고    scopus 로고
    • Commonly used Saccharomyces cerevisiae strains (E.G. BY4741, W303) are growth sensitive on synthetic complete medium due to poor leucine uptake
    • Cohen R, Engelberg D. 2007. Commonly used Saccharomyces cerevisiae strains (e.g. BY4741, W303) are growth sensitive on synthetic complete medium due to poor leucine uptake. FEMS Microbiol Lett 273:239–243. http://dx.doi.org/10.1111/j.1574-6968.2007.00798.x.
    • (2007) FEMS Microbiol Lett , vol.273 , pp. 239-243
    • Cohen, R.1    Engelberg, D.2
  • 61
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568. http://dx.doi.org/10.1126/science.1131969
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 62
    • 70349410320 scopus 로고    scopus 로고
    • Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene
    • Baerends RJ, Qiu JL, Rasmussen S, Nielsen HB, Brandt A. 2009. Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Appl Environ Microbiol 75:6055–6061. http://dx.doi.org/10.1128/AEM.00989-09
    • (2009) Appl Environ Microbiol , vol.75 , pp. 6055-6061
    • Baerends, R.J.1    Qiu, J.L.2    Rasmussen, S.3    Nielsen, H.B.4    Brandt, A.5
  • 63
    • 40549129666 scopus 로고    scopus 로고
    • Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease
    • Alves SL, Jr, Herberts RA, Hollatz C, Trichez D, Miletti LC, de Araujo PS, Stambuk BU. 2008. Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Appl Environ Microbiol 74: 1494–1501. http://dx.doi.org/10.1128/AEM.02570-07
    • (2008) Appl Environ Microbiol , vol.74 , pp. 1494-1501
    • Alves, S.L.1    Herberts, R.A.2    Hollatz, C.3    Trichez, D.4    Miletti, L.C.5    De Araujo, P.S.6    Stambuk, B.U.7
  • 64
    • 0032898882 scopus 로고    scopus 로고
    • Active alphaglucoside transport in Saccharomyces cerevisiae
    • Stambuk BU, da Silva MA, Panek AD, de Araujo PS. 1999. Active alphaglucoside transport in Saccharomyces cerevisiae. FEMS Microbiol Lett 170: 105–110. http://dx.doi.org/10.1111/j.1574-6968.1999.tb13361.x.
    • (1999) FEMS Microbiol Lett , vol.170 , pp. 105-110
    • Stambuk, B.U.1    Da Silva, M.A.2    Panek, A.D.3    De Araujo, P.S.4
  • 65
    • 0002349510 scopus 로고    scopus 로고
    • Impact of glucose-fructose-ratio on stuck fermentations: Practical experiences to restart stuck fermentations
    • Gafner J, Schütz M. 1996. Impact of glucose-fructose-ratio on stuck fermentations: practical experiences to restart stuck fermentations. Vitic Enol Sci 51:214–218
    • (1996) Vitic Enol Sci , vol.51 , pp. 214-218
    • Gafner, J.1    Schütz, M.2
  • 66
    • 0035854647 scopus 로고    scopus 로고
    • Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae
    • Grundmann O, Mosch HU, Braus GH. 2001. Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae. J Biol Chem 276:25661–25671. http://dx.doi.org/10.1074/jbc.M101068200.
    • (2001) J Biol Chem , vol.276 , pp. 25661-25671
    • Grundmann, O.1    Mosch, H.U.2    Braus, G.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.