-
1
-
-
0034501106
-
Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation
-
Lowrey PL, Takahashi JS. Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu Rev Genet 2000; 34: 533-562.
-
(2000)
Annu Rev Genet
, vol.34
, pp. 533-562
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
2
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010; 330: 1349-1354.
-
(2010)
Science
, vol.330
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
3
-
-
77951889295
-
The mammalian circadian timing system: organization and coordination of central and peripheral clocks
-
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 2010; 72: 517-549.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 517-549
-
-
Dibner, C.1
Schibler, U.2
Albrecht, U.3
-
4
-
-
0032511229
-
A serum shock induces circadian gene expression in mammalian tissue culture cells
-
Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998; 93: 929-937.
-
(1998)
Cell
, vol.93
, pp. 929-937
-
-
Balsalobre, A.1
Damiola, F.2
Schibler, U.3
-
5
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 2008; 105: 15172-15177.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
Storch, K.F.2
Weitz, C.J.3
-
6
-
-
84884248040
-
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
-
Peek CB, Affinati AH, Ramsey KM et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013; 342: 1243417.
-
(2013)
Science
, vol.342
, pp. 1243417
-
-
Peek, C.B.1
Affinati, A.H.2
Ramsey, K.M.3
-
7
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B, Ramsey KM, Buhr ED et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010; 466: 571-572.
-
(2010)
Nature
, vol.466
, pp. 571-572
-
-
Marcheva, B.1
Ramsey, K.M.2
Buhr, E.D.3
-
8
-
-
79953323827
-
An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice
-
Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 2011; 54: 120-124.
-
(2011)
Diabetologia
, vol.54
, pp. 120-124
-
-
Sadacca, L.A.1
Lamia, K.A.2
deLemos, A.S.3
Blum, B.4
Weitz, C.J.5
-
9
-
-
77955983063
-
Circadian control of global gene expression patterns
-
Doherty CJ, Kay SA. Circadian control of global gene expression patterns. Annu Rev Genet 2010; 44: 419-444.
-
(2010)
Annu Rev Genet
, vol.44
, pp. 419-444
-
-
Doherty, C.J.1
Kay, S.A.2
-
10
-
-
0031767971
-
Adaptive significance of circadian programs in cyanobacteria
-
Johnson CH, Golden SS, Kondo T. Adaptive significance of circadian programs in cyanobacteria. Trends Microbiol 1998; 6: 407-410.
-
(1998)
Trends Microbiol
, vol.6
, pp. 407-410
-
-
Johnson, C.H.1
Golden, S.S.2
Kondo, T.3
-
11
-
-
0032555144
-
Resonating circadian clocks enhance fitness in cyanobacteria
-
Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A 1998; 95: 8660-8664.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 8660-8664
-
-
Ouyang, Y.1
Andersson, C.R.2
Kondo, T.3
Golden, S.S.4
Johnson, C.H.5
-
12
-
-
58149175143
-
A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk
-
Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 2009; 41: 89-94.
-
(2009)
Nat Genet
, vol.41
, pp. 89-94
-
-
Bouatia-Naji, N.1
Bonnefond, A.2
Cavalcanti-Proenca, C.3
-
13
-
-
75749086085
-
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
-
Dupuis J, Langenberg C, Prokopenko I et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42: 105-116.
-
(2010)
Nat Genet
, vol.42
, pp. 105-116
-
-
Dupuis, J.1
Langenberg, C.2
Prokopenko, I.3
-
14
-
-
67349224047
-
Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene
-
Mulder H, Nagorny CL, Lyssenko V, Groop L. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia 2009; 52: 1240-1249.
-
(2009)
Diabetologia
, vol.52
, pp. 1240-1249
-
-
Mulder, H.1
Nagorny, C.L.2
Lyssenko, V.3
Groop, L.4
-
15
-
-
84921712126
-
Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness
-
Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A 2015; 112: 1232-1237.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 1232-1237
-
-
Chang, A.M.1
Aeschbach, D.2
Duffy, J.F.3
Czeisler, C.A.4
-
16
-
-
0032486330
-
Role of the CLOCK protein in the mammalian circadian mechanism
-
Gekakis N, Staknis D, Nguyen HB et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280: 1564-1569.
-
(1998)
Science
, vol.280
, pp. 1564-1569
-
-
Gekakis, N.1
Staknis, D.2
Nguyen, H.B.3
-
17
-
-
20844461135
-
Obesity and metabolic syndrome in circadian clock mutant mice
-
Turek FW, Joshu C, Kohsaka A et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science 2005; 308: 1043-1045.
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
Joshu, C.2
Kohsaka, A.3
-
18
-
-
84908510371
-
Circadian disruption in the pathogenesis of metabolic syndrome
-
Maury E, Hong HK, Bass J. Circadian disruption in the pathogenesis of metabolic syndrome. Diabetes Metab 2014; 40: 338-346.
-
(2014)
Diabetes Metab
, vol.40
, pp. 338-346
-
-
Maury, E.1
Hong, H.K.2
Bass, J.3
-
19
-
-
84927697716
-
Nuclear receptor Rev-erbalpha: up, down, and all around
-
Everett LJ, Lazar MA. Nuclear receptor Rev-erbalpha: up, down, and all around. Trends Endocrinol Metab 2014; 25: 586-592.
-
(2014)
Trends Endocrinol Metab
, vol.25
, pp. 586-592
-
-
Everett, L.J.1
Lazar, M.A.2
-
20
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
Asher G, Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 2011; 13: 125-137.
-
(2011)
Cell Metab
, vol.13
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
21
-
-
84879001061
-
Bmal1 and beta-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced beta-cell failure in mice
-
Lee J, Moulik M, Fang Z et al. Bmal1 and beta-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced beta-cell failure in mice. Mol Cell Biol 2013; 33: 2327-2338.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 2327-2338
-
-
Lee, J.1
Moulik, M.2
Fang, Z.3
-
22
-
-
84878347362
-
Autonomous and self-sustained circadian oscillators displayed in human islet cells
-
Pulimeno P, Mannic T, Sage D et al. Autonomous and self-sustained circadian oscillators displayed in human islet cells. Diabetologia 2013; 56: 497-507.
-
(2013)
Diabetologia
, vol.56
, pp. 497-507
-
-
Pulimeno, P.1
Mannic, T.2
Sage, D.3
-
23
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N, Yoo SH, Huang HC et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012; 338: 349-354.
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
Yoo, S.H.2
Huang, H.C.3
-
24
-
-
84881506759
-
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
-
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 2012; 1: e00011.
-
(2012)
eLife
, vol.1
, pp. e00011
-
-
Menet, J.S.1
Rodriguez, J.2
Abruzzi, K.C.3
Rosbash, M.4
-
25
-
-
84911865436
-
Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo
-
Fang B, Everett LJ, Jager J et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 2014; 159: 1140-1152.
-
(2014)
Cell
, vol.159
, pp. 1140-1152
-
-
Fang, B.1
Everett, L.J.2
Jager, J.3
-
26
-
-
0035856943
-
Diabetes mellitus and genetically programmed defects in beta-cell function
-
Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 2001; 414: 788-791.
-
(2001)
Nature
, vol.414
, pp. 788-791
-
-
Bell, G.I.1
Polonsky, K.S.2
-
27
-
-
77649086970
-
A map of open chromatin in human pancreatic islets
-
Gaulton KJ, Nammo T, Pasquali L et al. A map of open chromatin in human pancreatic islets. Nat Genet 2010; 42: 255-259.
-
(2010)
Nat Genet
, vol.42
, pp. 255-259
-
-
Gaulton, K.J.1
Nammo, T.2
Pasquali, L.3
-
28
-
-
84891856209
-
Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets
-
Kameswaran V, Bramswig NC, McKenna LB et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 2014; 19: 135-145.
-
(2014)
Cell Metab
, vol.19
, pp. 135-145
-
-
Kameswaran, V.1
Bramswig, N.C.2
McKenna, L.B.3
-
29
-
-
84895806401
-
Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants
-
Pasquali L, Gaulton KJ, Rodriguez-Segui SA et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 2014; 46: 136-143.
-
(2014)
Nat Genet
, vol.46
, pp. 136-143
-
-
Pasquali, L.1
Gaulton, K.J.2
Rodriguez-Segui, S.A.3
-
30
-
-
80051623066
-
Circadian rhythms, aging, and life span in mammals
-
Froy O. Circadian rhythms, aging, and life span in mammals. Physiology (Bethesda) 2011; 26: 225-235.
-
(2011)
Physiology (Bethesda)
, vol.26
, pp. 225-235
-
-
Froy, O.1
-
31
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S, Antoch MP, Miller BH et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109: 307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
Antoch, M.P.2
Miller, B.H.3
-
32
-
-
0037006795
-
Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
-
Akhtar RA, Reddy AB, Maywood ES et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 2002; 12: 540-550.
-
(2002)
Curr Biol
, vol.12
, pp. 540-550
-
-
Akhtar, R.A.1
Reddy, A.B.2
Maywood, E.S.3
-
33
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch KF, Lipan O, Leykin I et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002; 417: 78-83.
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
Lipan, O.2
Leykin, I.3
-
34
-
-
84909592563
-
A circadian gene expression atlas in mammals: implications for biology and medicine
-
Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 2014; 111: 16219-16224.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 16219-16224
-
-
Zhang, R.1
Lahens, N.F.2
Ballance, H.I.3
Hughes, M.E.4
Hogenesch, J.B.5
-
35
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey KM, Yoshino J, Brace CS et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009; 324: 651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
-
36
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009; 324: 654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
Kaluzova, M.4
Sassone-Corsi, P.5
-
37
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, Gatfield D, Stratmann M et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134: 317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
-
38
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y, Kaluzova M, Grimaldi B et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008; 134: 329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
-
39
-
-
35549002189
-
Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme
-
Revollo JR, Korner A, Mills KF et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007; 6: 363-375.
-
(2007)
Cell Metab
, vol.6
, pp. 363-375
-
-
Revollo, J.R.1
Korner, A.2
Mills, K.F.3
-
40
-
-
65649126738
-
Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide
-
Sasaki Y, Vohra BP, Lund FE, Milbrandt J. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J Neurosci 2009; 29: 5525-5535.
-
(2009)
J Neurosci
, vol.29
, pp. 5525-5535
-
-
Sasaki, Y.1
Vohra, B.P.2
Lund, F.E.3
Milbrandt, J.4
-
41
-
-
84907390733
-
P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage
-
Wang G, Han T, Nijhawan D et al. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell 2014; 158: 1324-1334.
-
(2014)
Cell
, vol.158
, pp. 1324-1334
-
-
Wang, G.1
Han, T.2
Nijhawan, D.3
-
42
-
-
4043165678
-
Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
-
Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004; 305: 1010-1013.
-
(2004)
Science
, vol.305
, pp. 1010-1013
-
-
Araki, T.1
Sasaki, Y.2
Milbrandt, J.3
-
43
-
-
38349112898
-
Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice
-
Ramsey KM, Mills KF, Satoh A, Imai S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 2008; 7: 78-88.
-
(2008)
Aging Cell
, vol.7
, pp. 78-88
-
-
Ramsey, K.M.1
Mills, K.F.2
Satoh, A.3
Imai, S.4
-
44
-
-
80053920774
-
Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
-
Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 2011; 14: 528-536.
-
(2011)
Cell Metab
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
Mills, K.F.2
Yoon, M.J.3
Imai, S.4
-
45
-
-
84862022077
-
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
-
Canto C, Houtkooper RH, Pirinen E et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 2012; 15: 838-847.
-
(2012)
Cell Metab
, vol.15
, pp. 838-847
-
-
Canto, C.1
Houtkooper, R.H.2
Pirinen, E.3
-
46
-
-
84879391795
-
SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
-
Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013; 153: 1448-1460.
-
(2013)
Cell
, vol.153
, pp. 1448-1460
-
-
Chang, H.C.1
Guarente, L.2
-
47
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey MD, Shimazu T, Goetzman E et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464: 121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
-
48
-
-
84895128336
-
Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock
-
Dyar KA, Ciciliot S, Wright LE et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 2014; 3: 29-41.
-
(2014)
Mol Metab
, vol.3
, pp. 29-41
-
-
Dyar, K.A.1
Ciciliot, S.2
Wright, L.E.3
-
49
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola F, Le Minh N, Preitner N et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000; 14: 2950-2961.
-
(2000)
Genes Dev
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
Le Minh, N.2
Preitner, N.3
-
50
-
-
0035910387
-
Entrainment of the circadian clock in the liver by feeding
-
Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 2001; 291: 490-493.
-
(2001)
Science
, vol.291
, pp. 490-493
-
-
Stokkan, K.A.1
Yamazaki, S.2
Tei, H.3
Sakaki, Y.4
Menaker, M.5
-
51
-
-
35548930677
-
High-fat diet disrupts behavioral and molecular circadian rhythms in mice
-
Kohsaka A, Laposky AD, Ramsey KM et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007; 6: 414-421.
-
(2007)
Cell Metab
, vol.6
, pp. 414-421
-
-
Kohsaka, A.1
Laposky, A.D.2
Ramsey, K.M.3
-
52
-
-
70350574819
-
Circadian timing of food intake contributes to weight gain
-
Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 2009; 17: 2100-2102.
-
(2009)
Obesity (Silver Spring)
, vol.17
, pp. 2100-2102
-
-
Arble, D.M.1
Bass, J.2
Laposky, A.D.3
Vitaterna, M.H.4
Turek, F.W.5
-
53
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
Hatori M, Vollmers C, Zarrinpar A et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15: 848-860.
-
(2012)
Cell Metab
, vol.15
, pp. 848-860
-
-
Hatori, M.1
Vollmers, C.2
Zarrinpar, A.3
-
54
-
-
77958609419
-
Rapid changes in night eating: considering mechanisms
-
Stunkard A, Lu XY. Rapid changes in night eating: considering mechanisms. Eat Weight Disord 2010; 15: e2-e8.
-
(2010)
Eat Weight Disord
, vol.15
, pp. e2-e8
-
-
Stunkard, A.1
Lu, X.Y.2
-
55
-
-
77649138576
-
Circadian rhythms and metabolic syndrome: from experimental genetics to human disease
-
Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 2010; 106: 447-462.
-
(2010)
Circ Res
, vol.106
, pp. 447-462
-
-
Maury, E.1
Ramsey, K.M.2
Bass, J.3
-
56
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta
-
Cho H, Zhao X, Hatori M et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 2012; 485: 123-127.
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
Zhao, X.2
Hatori, M.3
-
57
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D, Liu T, Sun Z et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011; 331: 1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
-
58
-
-
79952261359
-
Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey G, Cesbron F, Rougemont J et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 2011; 9: e1000595.
-
(2011)
PLoS Biol
, vol.9
, pp. e1000595
-
-
Rey, G.1
Cesbron, F.2
Rougemont, J.3
|