-
1
-
-
84873619760
-
Policy: classify plastic waste as hazardous
-
Rochman C.M., Browne M.A., Halpern B.S., Hentschel B.T., Hoh E., Karapanagioti H.K., Rios-Mendoza L.M., Takada H., Teh S., Thompson R.C. Policy: classify plastic waste as hazardous. Nature 2013, 494:169-171.
-
(2013)
Nature
, vol.494
, pp. 169-171
-
-
Rochman, C.M.1
Browne, M.A.2
Halpern, B.S.3
Hentschel, B.T.4
Hoh, E.5
Karapanagioti, H.K.6
Rios-Mendoza, L.M.7
Takada, H.8
Teh, S.9
Thompson, R.C.10
-
2
-
-
84923809316
-
Biorefineries for the production of top building block chemicals and their derivatives
-
Choi S., Song C.W., Shin J.H., Lee S.Y. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 2015, 28:223-239.
-
(2015)
Metab Eng
, vol.28
, pp. 223-239
-
-
Choi, S.1
Song, C.W.2
Shin, J.H.3
Lee, S.Y.4
-
3
-
-
84897114083
-
Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter
-
Li M., Li D., Huang Y., Liu M., Wang H., Tang Q., Lu F. Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter. J Ind Microbiol Biotechnol 2014, 41:701-709.
-
(2014)
J Ind Microbiol Biotechnol
, vol.41
, pp. 701-709
-
-
Li, M.1
Li, D.2
Huang, Y.3
Liu, M.4
Wang, H.5
Tang, Q.6
Lu, F.7
-
4
-
-
84925068047
-
Enhanced cadaverine production from l-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB
-
Ma W., Cao W., Zhang H., Chen K., Li Y., Ouyang P. Enhanced cadaverine production from l-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnol Lett 2015, 37:799-806.
-
(2015)
Biotechnol Lett
, vol.37
, pp. 799-806
-
-
Ma, W.1
Cao, W.2
Zhang, H.3
Chen, K.4
Li, Y.5
Ouyang, P.6
-
5
-
-
70350508288
-
Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine
-
Qian Z.G., Xia X.X., Lee S.Y. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng 2009, 104:651-662.
-
(2009)
Biotechnol Bioeng
, vol.104
, pp. 651-662
-
-
Qian, Z.G.1
Xia, X.X.2
Lee, S.Y.3
-
6
-
-
84862002824
-
Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system
-
Schneider J., Eberhardt D., Wendisch V.F. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 2012, 95:169-178.
-
(2012)
Appl Microbiol Biotechnol
, vol.95
, pp. 169-178
-
-
Schneider, J.1
Eberhardt, D.2
Wendisch, V.F.3
-
7
-
-
84920074788
-
Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine
-
Kim S.Y., Lee J., Lee S.Y. Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine. Biotechnol Bioeng 2014, 112:416-421.
-
(2014)
Biotechnol Bioeng
, vol.112
, pp. 416-421
-
-
Kim, S.Y.1
Lee, J.2
Lee, S.Y.3
-
8
-
-
78649434619
-
Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine
-
Qian Z.G., Xia X.X., Lee S.Y. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 2011, 108:93-103.
-
(2011)
Biotechnol Bioeng
, vol.108
, pp. 93-103
-
-
Qian, Z.G.1
Xia, X.X.2
Lee, S.Y.3
-
9
-
-
84873596341
-
Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
-
Na D., Yoo S.M., Chung H., Park H., Park J.H., Lee S.Y. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 2013, 31:170-174.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 170-174
-
-
Na, D.1
Yoo, S.M.2
Chung, H.3
Park, H.4
Park, J.H.5
Lee, S.Y.6
-
10
-
-
84905366023
-
From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum
-
Kind S., Neubauer S., Becker J., Yamamoto M., Volkert M., Abendroth G., Zelder O., Wittmann C. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 2014, 25:113-123.
-
(2014)
Metab Eng
, vol.25
, pp. 113-123
-
-
Kind, S.1
Neubauer, S.2
Becker, J.3
Yamamoto, M.4
Volkert, M.5
Abendroth, G.6
Zelder, O.7
Wittmann, C.8
-
11
-
-
84861440714
-
Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
-
Burk MJ, Bugard AP, Osterhout RE, Priti P: Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid. US Patent 2010, US20100317069A1.
-
(2010)
-
-
Burk, M.J.1
Bugard, A.P.2
Osterhout, R.E.3
Priti, P.4
-
12
-
-
13244288422
-
-
DTIC Document
-
Werpy T., Petersen G., Aden A., Bozell J., Holladay J., White J., Manheim A., Eliot D., Lasure L., Jones S. Top value added chemicals from biomass Volume 1-results of screening for potential candidates from sugars and synthesis gas 2004, DTIC Document.
-
(2004)
Top value added chemicals from biomass Volume 1-results of screening for potential candidates from sugars and synthesis gas
-
-
Werpy, T.1
Petersen, G.2
Aden, A.3
Bozell, J.4
Holladay, J.5
White, J.6
Manheim, A.7
Eliot, D.8
Lasure, L.9
Jones, S.10
-
13
-
-
0013605835
-
Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants
-
Michael V, Guettler MKJ, Rumler D: Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US Patent 1996, US 5573931.
-
(1996)
-
-
Michael, V.1
Guettler, M.K.J.2
Rumler, D.3
-
14
-
-
33645029734
-
Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production
-
Lee S.J., Song H., Lee S.Y. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 2006, 72:1939-1948.
-
(2006)
Appl Environ Microbiol
, vol.72
, pp. 1939-1948
-
-
Lee, S.J.1
Song, H.2
Lee, S.Y.3
-
15
-
-
56349093759
-
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain
-
Okino S., Noburyu R., Suda M., Jojima T., Inui M., Yukawa H. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 2008, 81:459-464.
-
(2008)
Appl Microbiol Biotechnol
, vol.81
, pp. 459-464
-
-
Okino, S.1
Noburyu, R.2
Suda, M.3
Jojima, T.4
Inui, M.5
Yukawa, H.6
-
16
-
-
84872655172
-
Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
-
Otero J.M., Cimini D., Patil K.R., Poulsen S.G., Olsson L., Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLOS ONE 2013, 8:e54144.
-
(2013)
PLOS ONE
, vol.8
, pp. e54144
-
-
Otero, J.M.1
Cimini, D.2
Patil, K.R.3
Poulsen, S.G.4
Olsson, L.5
Nielsen, J.6
-
17
-
-
84876762221
-
Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate
-
Adkins J., Jordan J., Nielsen D.R. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol Bioeng 2013, 110:1726-1734.
-
(2013)
Biotechnol Bioeng
, vol.110
, pp. 1726-1734
-
-
Adkins, J.1
Jordan, J.2
Nielsen, D.R.3
-
18
-
-
84872156620
-
Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals
-
Park S.J., Kim E.Y., Noh W., Park H.M., Oh Y.H., Lee S.H., Song B.K., Jegal J., Lee S.Y. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 2013, 16:42-47.
-
(2013)
Metab Eng
, vol.16
, pp. 42-47
-
-
Park, S.J.1
Kim, E.Y.2
Noh, W.3
Park, H.M.4
Oh, Y.H.5
Lee, S.H.6
Song, B.K.7
Jegal, J.8
Lee, S.Y.9
-
19
-
-
84881028723
-
Toward biotechnological production of adipic acid and precursors from biorenewables
-
Polen T., Spelberg M., Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 2013, 167:75-84.
-
(2013)
J Biotechnol
, vol.167
, pp. 75-84
-
-
Polen, T.1
Spelberg, M.2
Bott, M.3
-
20
-
-
79955390876
-
Microorganisms for the production of adipic acid and other compounds
-
Burgard AP, Pharkya P, Osterhout RE: Microorganisms for the production of adipic acid and other compounds. US Patent 2011, US 8062871.
-
-
-
Burgard, A.P.1
Pharkya, P.2
Osterhout, R.E.3
-
21
-
-
84876518857
-
Biological methods for preparing adipic acid
-
Picataggio S, Beardslee T: Biological methods for preparing adipic acid. US Patent 2012, US 20120021474A1.
-
(2012)
-
-
Picataggio, S.1
Beardslee, T.2
-
22
-
-
84931420611
-
Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli
-
Yu J.L., Xia X.X., Zhong J.J., Qian Z.G. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol Bioeng 2014, 111:2580-2586.
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 2580-2586
-
-
Yu, J.L.1
Xia, X.X.2
Zhong, J.J.3
Qian, Z.G.4
-
23
-
-
84922980443
-
Integrated engineering of beta-oxidation reversal and omega-oxidation pathways for the synthesis of medium chain omega-functionalized carboxylic acids
-
Clomburg J.M., Blankschien M.D., Vick J.E., Chou A., Kim S., Gonzalez R. Integrated engineering of beta-oxidation reversal and omega-oxidation pathways for the synthesis of medium chain omega-functionalized carboxylic acids. Metab Eng 2015, 28:202-212.
-
(2015)
Metab Eng
, vol.28
, pp. 202-212
-
-
Clomburg, J.M.1
Blankschien, M.D.2
Vick, J.E.3
Chou, A.4
Kim, S.5
Gonzalez, R.6
-
24
-
-
84940060315
-
Biological methods for preparing a fatty dicarboxylic acid
-
Beardslee T, Picataggio S, Eirich ED, Laplaza JM: Biological methods for preparing a fatty dicarboxylic acid. US Patent 2014, US20140228586A1.
-
(2014)
-
-
Beardslee, T.1
Picataggio, S.2
Eirich, E.D.3
Laplaza, J.M.4
-
25
-
-
84886948663
-
Microbial production of short-chain alkanes
-
Choi Y.J., Lee S.Y. Microbial production of short-chain alkanes. Nature 2013, 502:571-574.
-
(2013)
Nature
, vol.502
, pp. 571-574
-
-
Choi, Y.J.1
Lee, S.Y.2
-
26
-
-
84894635303
-
Method for producing 3-hydroxypropionic acid and other products
-
Lynch MD, Gill RT, Warnecke LT: Method for producing 3-hydroxypropionic acid and other products. US Patent 2010, US883464B2.
-
(2010)
-
-
Lynch, M.D.1
Gill, R.T.2
Warnecke, L.T.3
-
27
-
-
84900437499
-
Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli
-
Tokuyama K., Ohno S., Yoshikawa K., Hirasawa T., Tanaka S., Furusawa C., Shimizu H. Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microb Cell Fact 2014, 13:64.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 64
-
-
Tokuyama, K.1
Ohno, S.2
Yoshikawa, K.3
Hirasawa, T.4
Tanaka, S.5
Furusawa, C.6
Shimizu, H.7
-
28
-
-
84937202955
-
Dual synthetic pathway for 3-hydroxypropionic acid production in engineered Escherichia coli
-
Honjo H., Tsuruno K., Tatsuke T., Sato M., Hanai T. Dual synthetic pathway for 3-hydroxypropionic acid production in engineered Escherichia coli. J Biosci Bioeng 2015.
-
(2015)
J Biosci Bioeng
-
-
Honjo, H.1
Tsuruno, K.2
Tatsuke, T.3
Sato, M.4
Hanai, T.5
-
29
-
-
79959374585
-
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
-
Yim H., Haselbeck R., Niu W., Pujol-Baxley C., Burgard A., Boldt J., Khandurina J., Trawick J.D., Osterhout R.E., Stephen R., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 2011, 7:445-452.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 445-452
-
-
Yim, H.1
Haselbeck, R.2
Niu, W.3
Pujol-Baxley, C.4
Burgard, A.5
Boldt, J.6
Khandurina, J.7
Trawick, J.D.8
Osterhout, R.E.9
Stephen, R.10
-
30
-
-
0142043797
-
Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial
-
Martin D.P., Williams S.F. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 2003, 16:97-105.
-
(2003)
Biochem Eng J
, vol.16
, pp. 97-105
-
-
Martin, D.P.1
Williams, S.F.2
-
31
-
-
84884918887
-
Production of 4-hydroxybutyric acid by metabolically engineered Mannheimia succiniciproducens and its conversion to gamma-butyrolactone by acid treatment
-
Choi S., Kim H.U., Kim T.Y., Kim W.J., Lee M.H., Lee S.Y. Production of 4-hydroxybutyric acid by metabolically engineered Mannheimia succiniciproducens and its conversion to gamma-butyrolactone by acid treatment. Metab Eng 2013, 20:73-83.
-
(2013)
Metab Eng
, vol.20
, pp. 73-83
-
-
Choi, S.1
Kim, H.U.2
Kim, T.Y.3
Kim, W.J.4
Lee, M.H.5
Lee, S.Y.6
-
32
-
-
79952106791
-
From zero to hero - design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
-
Becker J., Zelder O., Hafner S., Schroder H., Wittmann C. From zero to hero - design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 2011, 13:159-168.
-
(2011)
Metab Eng
, vol.13
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Hafner, S.3
Schroder, H.4
Wittmann, C.5
-
34
-
-
84879554383
-
Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli
-
Park S.J., Kim E.Y., Noh W., Oh Y.H., Kim H.Y., Song B.K., Cho K.M., Hong S.H., Lee S.H., et al. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng 2013, 36:885-892.
-
(2013)
Bioprocess Biosyst Eng
, vol.36
, pp. 885-892
-
-
Park, S.J.1
Kim, E.Y.2
Noh, W.3
Oh, Y.H.4
Kim, H.Y.5
Song, B.K.6
Cho, K.M.7
Hong, S.H.8
Lee, S.H.9
-
35
-
-
84924194524
-
Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range
-
Choi J.W., Yim S.S., Lee S.H., Kang T.J., Park S.J., Jeong K.J. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact 2015, 14:21.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 21
-
-
Choi, J.W.1
Yim, S.S.2
Lee, S.H.3
Kang, T.J.4
Park, S.J.5
Jeong, K.J.6
-
36
-
-
84908477634
-
High-level conversion of l-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis
-
Park S.J., Oh Y.H., Noh W., Kim H.Y., Shin J.H., Lee E.G., Lee S., David Y., Baylon M.G., Song B.K., et al. High-level conversion of l-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis. Biotech J 2014, 9:1322-1328.
-
(2014)
Biotech J
, vol.9
, pp. 1322-1328
-
-
Park, S.J.1
Oh, Y.H.2
Noh, W.3
Kim, H.Y.4
Shin, J.H.5
Lee, E.G.6
Lee, S.7
David, Y.8
Baylon, M.G.9
Song, B.K.10
-
37
-
-
84924058186
-
Microbial production of short chain diols
-
Jiang Y., Liu W., Zou H., Cheng T., Tian N., Xian M. Microbial production of short chain diols. Microb Cell Fact 2014, 13:165.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 165
-
-
Jiang, Y.1
Liu, W.2
Zou, H.3
Cheng, T.4
Tian, N.5
Xian, M.6
-
38
-
-
0142027026
-
Metabolic engineering for the microbial production of 1,3-propanediol
-
Nakamura C.E., Whited G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 2003, 14:454-459.
-
(2003)
Curr Opin Biotechnol
, vol.14
, pp. 454-459
-
-
Nakamura, C.E.1
Whited, G.M.2
-
39
-
-
21244482854
-
Process for the biological production of 1,3-propanediol with high titer
-
Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited G: Process for the biological production of 1,3-propanediol with high titer. US Patent 2000, US6514733B1.
-
(2000)
-
-
Emptage, M.1
Haynie, S.L.2
Laffend, L.A.3
Pucci, J.P.4
Whited, G.5
-
40
-
-
84922591980
-
Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose
-
Chen Z., Geng F., Zeng A.P. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose. Biotechnol J 2015, 10:284-289.
-
(2015)
Biotechnol J
, vol.10
, pp. 284-289
-
-
Chen, Z.1
Geng, F.2
Zeng, A.P.3
-
41
-
-
84925521927
-
An integrated biotechnology platform for developing sustainable chemical processes
-
Barton N.R., Burgard A.P., Burk M.J., Crater J.S., Osterhout R.E., Pharkya P., Steer B.A., Sun J., Trawick J.D., Van Dien S.J., et al. An integrated biotechnology platform for developing sustainable chemical processes. J Ind Microbiol Biotechnol 2015, 42:349-360.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 349-360
-
-
Barton, N.R.1
Burgard, A.P.2
Burk, M.J.3
Crater, J.S.4
Osterhout, R.E.5
Pharkya, P.6
Steer, B.A.7
Sun, J.8
Trawick, J.D.9
Van Dien, S.J.10
-
42
-
-
84964240931
-
Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli
-
Liu H., Lu T. Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng 2015, 29:135-141.
-
(2015)
Metab Eng
, vol.29
, pp. 135-141
-
-
Liu, H.1
Lu, T.2
-
43
-
-
70349485584
-
Bio-ethanol based ethylene
-
Morschbacker A. Bio-ethanol based ethylene. Polym Rev 2009, 49:79-84.
-
(2009)
Polym Rev
, vol.49
, pp. 79-84
-
-
Morschbacker, A.1
-
44
-
-
84876694741
-
Biosynthesis of ethylene glycol in Escherichia coli
-
Liu H., Ramos K.R., Valdehuesa K.N., Nisola G.M., Lee W.K., Chung W.J. Biosynthesis of ethylene glycol in Escherichia coli. Appl Microbiol Biotechnol 2013, 97:3409-3417.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 3409-3417
-
-
Liu, H.1
Ramos, K.R.2
Valdehuesa, K.N.3
Nisola, G.M.4
Lee, W.K.5
Chung, W.J.6
-
45
-
-
84940060317
-
Engineering microbes and metabolic pathways for the production of ethylene glycol
-
Stephanopoulos G, Pereira B, De MM, Dugar D, Avalos JL: Engineering microbes and metabolic pathways for the production of ethylene glycol. US Patent 2013, US20130316416.
-
(2013)
-
-
Stephanopoulos, G.1
Pereira, B.2
De, M.M.3
Dugar, D.4
Avalos, J.L.5
-
46
-
-
34249686497
-
Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene
-
Qi W.W., Vannelli T., Breinig S., Ben-Bassat A., Gatenby A.A., Haynie S.L., Sariaslani F.S. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Metab Eng 2007, 9:268-276.
-
(2007)
Metab Eng
, vol.9
, pp. 268-276
-
-
Qi, W.W.1
Vannelli, T.2
Breinig, S.3
Ben-Bassat, A.4
Gatenby, A.A.5
Haynie, S.L.6
Sariaslani, F.S.7
-
47
-
-
34848860795
-
Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12
-
Verhoef S., Ruijssenaars H.J., de Bont J.A., Wery J. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 2007, 132:49-56.
-
(2007)
J Biotechnol
, vol.132
, pp. 49-56
-
-
Verhoef, S.1
Ruijssenaars, H.J.2
de Bont, J.A.3
Wery, J.4
-
48
-
-
80052027792
-
Styrene biosynthesis from glucose by engineered E. coli
-
McKenna R., Nielsen D.R. Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 2011, 13:544-554.
-
(2011)
Metab Eng
, vol.13
, pp. 544-554
-
-
McKenna, R.1
Nielsen, D.R.2
-
49
-
-
84925939992
-
Comparing in situ removal strategies for improving styrene bioproduction
-
McKenna R., Moya L., McDaniel M., Nielsen D.R. Comparing in situ removal strategies for improving styrene bioproduction. Bioprocess Biosyst Eng 2015, 38:165-174.
-
(2015)
Bioprocess Biosyst Eng
, vol.38
, pp. 165-174
-
-
McKenna, R.1
Moya, L.2
McDaniel, M.3
Nielsen, D.R.4
-
50
-
-
84899747343
-
Metabolic engineering of Escherichia coli for the production of phenol from glucose
-
Kim B., Park H., Na D., Lee S.Y. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol J 2014, 9:621-629.
-
(2014)
Biotechnol J
, vol.9
, pp. 621-629
-
-
Kim, B.1
Park, H.2
Na, D.3
Lee, S.Y.4
-
51
-
-
84883991790
-
Microorganisms for the production of aniline
-
Pharkya P: Microorganisms for the production of aniline. US Patent 2011, US20110097767A1.
-
(2011)
-
-
Pharkya, P.1
-
52
-
-
84866285573
-
Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway
-
Koma D., Yamanaka H., Moriyoshi K., Ohmoto T., Sakai K. Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl Environ Microbiol 2012, 78:6203-6216.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 6203-6216
-
-
Koma, D.1
Yamanaka, H.2
Moriyoshi, K.3
Ohmoto, T.4
Sakai, K.5
-
53
-
-
0030040522
-
Tolumonas auensis gen nov, sp nov, a toluene-producing bacterium from anoxic sediments of a freshwater lake
-
Fischer-Romero C., Tindall B.J., Juttner F. Tolumonas auensis gen nov, sp nov, a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol 1996, 46:183-188.
-
(1996)
Int J Syst Bacteriol
, vol.46
, pp. 183-188
-
-
Fischer-Romero, C.1
Tindall, B.J.2
Juttner, F.3
-
55
-
-
0010407860
-
Bacterial polyhydroxyalkanoates
-
Lee S.Y. Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 1996, 49:1-14.
-
(1996)
Biotechnol Bioeng
, vol.49
, pp. 1-14
-
-
Lee, S.Y.1
-
56
-
-
84927516072
-
Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli
-
Meng C., Wang Y., Wu L.P., Shen R., Chen J.C., Wu Q., Chen G.Q. Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab Eng 2015, 29:189-195.
-
(2015)
Metab Eng
, vol.29
, pp. 189-195
-
-
Meng, C.1
Wang, Y.2
Wu, L.P.3
Shen, R.4
Chen, J.C.5
Wu, Q.6
Chen, G.Q.7
-
57
-
-
79958801008
-
Poly-3-hydroxyoctanoate P (3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina
-
Rai R., Yunos D.M., Boccaccini A.R., Knowles J.C., Barker I.A., Howdle S.M., Tredwell G.D., Keshavarz T., Roy I. Poly-3-hydroxyoctanoate P (3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. Biomacromolecules 2011, 12:2126-2136.
-
(2011)
Biomacromolecules
, vol.12
, pp. 2126-2136
-
-
Rai, R.1
Yunos, D.M.2
Boccaccini, A.R.3
Knowles, J.C.4
Barker, I.A.5
Howdle, S.M.6
Tredwell, G.D.7
Keshavarz, T.8
Roy, I.9
-
58
-
-
78650544471
-
Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited Pseudomonas putida
-
Liu Q., Luo G., Zhou X.R., Chen G.Q. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited Pseudomonas putida. Metab Eng 2011, 13:11-17.
-
(2011)
Metab Eng
, vol.13
, pp. 11-17
-
-
Liu, Q.1
Luo, G.2
Zhou, X.R.3
Chen, G.Q.4
-
60
-
-
84899658139
-
Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) by recombinant Escherichia coli expressing leucine metabolism-related enzymes derived from Clostridium difficile
-
Saika A., Watanabe Y., Sudesh K., Tsuge T. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) by recombinant Escherichia coli expressing leucine metabolism-related enzymes derived from Clostridium difficile. J Biosci Bioeng 2014, 117:670-675.
-
(2014)
J Biosci Bioeng
, vol.117
, pp. 670-675
-
-
Saika, A.1
Watanabe, Y.2
Sudesh, K.3
Tsuge, T.4
-
61
-
-
73949094856
-
Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers
-
Jung Y.K., Kim T.Y., Park S.J., Lee S.Y. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 2010, 105:161-171.
-
(2010)
Biotechnol Bioeng
, vol.105
, pp. 161-171
-
-
Jung, Y.K.1
Kim, T.Y.2
Park, S.J.3
Lee, S.Y.4
-
62
-
-
84871416564
-
Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme
-
Nduko J.M., Matsumoto K., Ooi T., Taguchi S. Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme. Metab Eng 2013, 15:159-166.
-
(2013)
Metab Eng
, vol.15
, pp. 159-166
-
-
Nduko, J.M.1
Matsumoto, K.2
Ooi, T.3
Taguchi, S.4
-
63
-
-
84876729194
-
Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli
-
Park S.J., Kang K.H., Lee H., Park A.R., Yang J.E., Oh Y.H., Song B.K., Jegal J., Lee S.H., Lee S.Y. Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli. J Biotechnol 2013, 165:93-98.
-
(2013)
J Biotechnol
, vol.165
, pp. 93-98
-
-
Park, S.J.1
Kang, K.H.2
Lee, H.3
Park, A.R.4
Yang, J.E.5
Oh, Y.H.6
Song, B.K.7
Jegal, J.8
Lee, S.H.9
Lee, S.Y.10
-
64
-
-
84885626440
-
Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science
-
Guerette P.A., Hoon S., Seow Y., Raida M., Masic A., Wong F.T., Ho V.H., Kong K.W., Demirel M.C., Pena-Francesch A., et al. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science. Nat Biotechnol 2013, 31:908-915.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 908-915
-
-
Guerette, P.A.1
Hoon, S.2
Seow, Y.3
Raida, M.4
Masic, A.5
Wong, F.T.6
Ho, V.H.7
Kong, K.W.8
Demirel, M.C.9
Pena-Francesch, A.10
-
65
-
-
84924072254
-
Recent advances in nanoscale bioinspired materials
-
Demirel M.C., Cetinkaya M., Pena-Francesch A., Jung H. Recent advances in nanoscale bioinspired materials. Macromol Biosci 2015, 15:300-311.
-
(2015)
Macromol Biosci
, vol.15
, pp. 300-311
-
-
Demirel, M.C.1
Cetinkaya, M.2
Pena-Francesch, A.3
Jung, H.4
-
66
-
-
0021170197
-
Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes
-
Senior R.M., Griffin G.L., Mecham R.P., Wrenn D.S., Prasad K.U., Urry D.W. Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol 1984, 99:870-874.
-
(1984)
J Cell Biol
, vol.99
, pp. 870-874
-
-
Senior, R.M.1
Griffin, G.L.2
Mecham, R.P.3
Wrenn, D.S.4
Prasad, K.U.5
Urry, D.W.6
-
67
-
-
84874275407
-
Batch production of a silk-elastin-like protein in E. coli BL21 (DE3): key parameters for optimisation
-
Collins T., Azevedo-Silva J., da Costa A., Branca F., Machado R., Casal M. Batch production of a silk-elastin-like protein in E. coli BL21 (DE3): key parameters for optimisation. Microb Cell Fact 2013, 12:585-595.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 585-595
-
-
Collins, T.1
Azevedo-Silva, J.2
da Costa, A.3
Branca, F.4
Machado, R.5
Casal, M.6
-
68
-
-
84904303264
-
High level biosynthesis of a silk-elastin-like protein in E. coli
-
Collins T., Barroca M., Branca F., Padrão J., Machado R., Casal M. High level biosynthesis of a silk-elastin-like protein in E. coli. Biomacromolecules 2014, 15:2701-2708.
-
(2014)
Biomacromolecules
, vol.15
, pp. 2701-2708
-
-
Collins, T.1
Barroca, M.2
Branca, F.3
Padrão, J.4
Machado, R.5
Casal, M.6
-
69
-
-
84869845368
-
Recent advances in production of recombinant spider silk proteins
-
Chung H., Kim T.Y., Lee S.Y. Recent advances in production of recombinant spider silk proteins. Curr Opin Biotechnol 2012, 23:957-964.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 957-964
-
-
Chung, H.1
Kim, T.Y.2
Lee, S.Y.3
-
70
-
-
77956296603
-
Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber
-
Xia X.X., Qian Z.G., Ki C.S., Park Y.H., Kaplan D.L., Lee S.Y. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 2010, 107:14059-14063.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 14059-14063
-
-
Xia, X.X.1
Qian, Z.G.2
Ki, C.S.3
Park, Y.H.4
Kaplan, D.L.5
Lee, S.Y.6
-
71
-
-
84907482080
-
Biomimetic production of silk-like recombinant squid sucker ring teeth proteins
-
Ding D., Guerette P.A., Hoon S., Kong K.W., Cornvik T., Nilsson M., Kumar A., Lescar J., Miserez A. Biomimetic production of silk-like recombinant squid sucker ring teeth proteins. Biomacromolecules 2014, 15:3278-3289.
-
(2014)
Biomacromolecules
, vol.15
, pp. 3278-3289
-
-
Ding, D.1
Guerette, P.A.2
Hoon, S.3
Kong, K.W.4
Cornvik, T.5
Nilsson, M.6
Kumar, A.7
Lescar, J.8
Miserez, A.9
-
72
-
-
84867670946
-
In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli
-
Choi Y.S., Yang Y.J., Yang B., Cha H.J. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli. Microb Cell Fact 2012, 11:139.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 139
-
-
Choi, Y.S.1
Yang, Y.J.2
Yang, B.3
Cha, H.J.4
-
73
-
-
20144366711
-
Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli
-
Hwang D.S., Gim Y., Cha H.J. Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli. Biotechnol Prog 2005, 21:965-970.
-
(2005)
Biotechnol Prog
, vol.21
, pp. 965-970
-
-
Hwang, D.S.1
Gim, Y.2
Cha, H.J.3
-
74
-
-
0032487734
-
Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli
-
Wong H.H., Kim Y.C., Lee S.Y., Chang H.N. Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli. Biotechnol Bioeng 1998, 60:271-276.
-
(1998)
Biotechnol Bioeng
, vol.60
, pp. 271-276
-
-
Wong, H.H.1
Kim, Y.C.2
Lee, S.Y.3
Chang, H.N.4
-
75
-
-
84923353747
-
Programmable biofilm-based materials from engineered curli nanofibres
-
Nguyen P.Q., Botyanszki Z., Tay P.K.R., Joshi N.S. Programmable biofilm-based materials from engineered curli nanofibres. Nat Commun 2014, 5:4945.
-
(2014)
Nat Commun
, vol.5
, pp. 4945
-
-
Nguyen, P.Q.1
Botyanszki, Z.2
Tay, P.K.R.3
Joshi, N.S.4
|