메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages S128-S132

Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes

Author keywords

Cardiovascular disease; Clinical narrative; Information extraction; Machine learning; Medical records; Natural language processing; Risk factors; Text mining

Indexed keywords

ARTIFICIAL INTELLIGENCE; BLOOD PRESSURE; COMPUTATIONAL LINGUISTICS; DATA MINING; HEALTH RISKS; INFORMATION RETRIEVAL; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 84940755209     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.08.002     Document Type: Article
Times cited : (64)

References (32)
  • 1
    • 84940056554 scopus 로고    scopus 로고
    • Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2
    • Stubbs A., Kotfila C., Xu H., Uzuner Ö. Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2. J. Biomed. Inform. 2015, 58S:S67-S77.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S67-S77
    • Stubbs, A.1    Kotfila, C.2    Xu, H.3    Uzuner, Ö.4
  • 2
    • 84940707615 scopus 로고    scopus 로고
    • Annotating risk factors for heart disease in clinical narratives for diabetic patients
    • Stubbs A., Uzuner Ö. Annotating risk factors for heart disease in clinical narratives for diabetic patients. J. Biomed. Inform. 2015, 58S:S78-S91.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S78-S91
    • Stubbs, A.1    Uzuner, Ö.2
  • 3
    • 7444236194 scopus 로고    scopus 로고
    • Uima: an architectural approach to unstructured information processing in the corporate research environment
    • Ferrucci D., Lally A. Uima: an architectural approach to unstructured information processing in the corporate research environment. Nat. Language Eng. 2004, 10(3-4):327-348.
    • (2004) Nat. Language Eng. , vol.10 , Issue.3-4 , pp. 327-348
    • Ferrucci, D.1    Lally, A.2
  • 4
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • Meystre S.M., Savova G.K., Kipper-Schuler K.C., Hurdle J.F., et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb. Med. Inform. 2008, 35:128-144.
    • (2008) Yearb. Med. Inform. , vol.35 , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3    Hurdle, J.F.4
  • 5
    • 9444273355 scopus 로고
    • Medicine computers and linguistics
    • Pratt A. Medicine computers and linguistics. Biomed. Eng. 1973, 87-140.
    • (1973) Biomed. Eng. , pp. 87-140
    • Pratt, A.1
  • 7
    • 70349467729 scopus 로고    scopus 로고
    • What can natural language processing do for clinical decision support?
    • Demner-Fushman D., Chapman W.W., McDonald C.J. What can natural language processing do for clinical decision support?. J. Biomed. Inform. 2009, 42(5):760-772.
    • (2009) J. Biomed. Inform. , vol.42 , Issue.5 , pp. 760-772
    • Demner-Fushman, D.1    Chapman, W.W.2    McDonald, C.J.3
  • 10
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS metathesaurus: the MetaMap program
    • American Medical Informatics Association
    • Aronson A.R. Effective mapping of biomedical text to the UMLS metathesaurus: the MetaMap program. Proceedings of the AMIA Symposium 2001, 17. American Medical Informatics Association.
    • (2001) Proceedings of the AMIA Symposium , pp. 17
    • Aronson, A.R.1
  • 11
    • 0345863927 scopus 로고    scopus 로고
    • The unified medical language system (umls): integrating biomedical terminology
    • Bodenreider O. The unified medical language system (umls): integrating biomedical terminology. Nucl. Acids Res. 2004, 32(Suppl. 1):D267-D270.
    • (2004) Nucl. Acids Res. , vol.32 , pp. D267-D270
    • Bodenreider, O.1
  • 12
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications
    • Savova G.K., Masanz J.J., Ogren P.V., Zheng J., Sohn S., Kipper-Schuler K.C., Chute C.G. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inform. Assoc. 2010, 17(5):507-513.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.5 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3    Zheng, J.4    Sohn, S.5    Kipper-Schuler, K.C.6    Chute, C.G.7
  • 13
    • 78149476739 scopus 로고    scopus 로고
    • Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents
    • Meystre S.M., Thibault J., Shen S., Hurdle J.F., South B.R. Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents. J. Am. Med. Inform. Assoc. 2010, 17(5):559-562.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.5 , pp. 559-562
    • Meystre, S.M.1    Thibault, J.2    Shen, S.3    Hurdle, J.F.4    South, B.R.5
  • 15
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman W.W., Bridewell W., Hanbury P., Cooper G.F., Buchanan B.G. A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 2001, 34(5):301-310.
    • (2001) J. Biomed. Inform. , vol.34 , Issue.5 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3    Cooper, G.F.4    Buchanan, B.G.5
  • 16
    • 33745845169 scopus 로고    scopus 로고
    • A temporal constraint structure for extracting temporal information from clinical narrative
    • Zhou L., Melton G.B., Parsons S., Hripcsak G. A temporal constraint structure for extracting temporal information from clinical narrative. J. Biomed. Inform. 2006, 39(4):424-439.
    • (2006) J. Biomed. Inform. , vol.39 , Issue.4 , pp. 424-439
    • Zhou, L.1    Melton, G.B.2    Parsons, S.3    Hripcsak, G.4
  • 17
    • 34748861490 scopus 로고    scopus 로고
    • Finding temporal order in discharge summaries
    • American Medical Informatics Association
    • Bramsen P., Deshpande P., Lee Y.K., Barzilay R. Finding temporal order in discharge summaries. AMIA Annual Symposium Proceedings 2006, vol. 20:81. American Medical Informatics Association.
    • (2006) AMIA Annual Symposium Proceedings , vol.20 , pp. 81
    • Bramsen, P.1    Deshpande, P.2    Lee, Y.K.3    Barzilay, R.4
  • 19
    • 80053240828 scopus 로고    scopus 로고
    • Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions
    • Chapman W.W., Nadkarni P.M., Hirschman L., D'Avolio L.W., Savova G.K., Uzuner Ö. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions. J. Am. Med. Inform. Assoc. 2011, 18(5):540-543.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , Issue.5 , pp. 540-543
    • Chapman, W.W.1    Nadkarni, P.M.2    Hirschman, L.3    D'Avolio, L.W.4    Savova, G.K.5    Uzuner, Ö.6
  • 20
    • 34548508913 scopus 로고    scopus 로고
    • Evaluating the state-of-the-art in automatic de-identification
    • Uzuner Ö., Luo Y., Szolovits P. Evaluating the state-of-the-art in automatic de-identification. J. Am. Med. Inform. Assoc. 2007, 14(5):550-563.
    • (2007) J. Am. Med. Inform. Assoc. , vol.14 , Issue.5 , pp. 550-563
    • Uzuner, Ö.1    Luo, Y.2    Szolovits, P.3
  • 21
    • 34548516061 scopus 로고    scopus 로고
    • Identifying patient smoking status from medical discharge records
    • Uzuner Ö., Goldstein I., Luo Y., Kohane I. Identifying patient smoking status from medical discharge records. J. Am. Med. Inform. Assoc. 2008, 15(1):14-24.
    • (2008) J. Am. Med. Inform. Assoc. , vol.15 , Issue.1 , pp. 14-24
    • Uzuner, Ö.1    Goldstein, I.2    Luo, Y.3    Kohane, I.4
  • 22
  • 23
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner Ö., Solti I., Cadag E. Extracting medication information from clinical text. J. Am. Med. Inform. Assoc. 2010, 17(5):514-518.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.5 , pp. 514-518
    • Uzuner, Ö.1    Solti, I.2    Cadag, E.3
  • 24
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner Ö., South B.R., Shen S., DuVall S.L. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Inform. Assoc. 2011, 18(5):552-556.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , Issue.5 , pp. 552-556
    • Uzuner, Ö.1    South, B.R.2    Shen, S.3    DuVall, S.L.4
  • 26
    • 84882744737 scopus 로고    scopus 로고
    • Evaluating temporal relations in clinical text: 2012 i2b2 challenge
    • (amiajnl-2013)
    • W. Sun, A. Rumshisky, Ö. Uzuner, Evaluating temporal relations in clinical text: 2012 i2b2 challenge, J. Am. Med. Inform. Assoc., 2013 (amiajnl-2013).
    • (2013) J. Am. Med. Inform. Assoc.
    • Sun, W.1    Rumshisky, A.2    Ö., Uzuner3
  • 28
    • 85037338954 scopus 로고    scopus 로고
    • Generating typed dependency parses from phrase structure parses
    • M.-C. De Marneffe, B. MacCartney, C.D. Manning, et al., Generating typed dependency parses from phrase structure parses, in: Proceedings of LREC, vol. 6, 2006, pp. 449-454.
    • (2006) Proceedings of LREC , vol.6 , pp. 49-454
    • De Marneffe, M.-C.1    MacCartney, B.2    Manning, C.D.3
  • 32
    • 84936816696 scopus 로고    scopus 로고
    • Combining glass box and black box evaluations in the identification of heart disease risk factors and their temporal relations from clinical records
    • Grouin C., Moriceau V., Zweigenbaum P. Combining glass box and black box evaluations in the identification of heart disease risk factors and their temporal relations from clinical records. J. Biomed. Inform. 2015, 58S:S133-S142.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S133-S142
    • Grouin, C.1    Moriceau, V.2    Zweigenbaum, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.