메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages S164-S170

Risk factor detection for heart disease by applying text analytics in electronic medical records

Author keywords

Medical records; Natural language processing; Risk assessment; Text classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; CARDIOLOGY; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL LINGUISTICS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MACHINE COMPONENTS; MEDICAL COMPUTING; NATURAL LANGUAGE PROCESSING SYSTEMS; RISK ASSESSMENT; TEXT PROCESSING;

EID: 84940099418     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.08.011     Document Type: Article
Times cited : (36)

References (28)
  • 2
    • 79952444246 scopus 로고    scopus 로고
    • Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association
    • Heidenreich P.A., Trogdon J.G., Khavjou O.A., et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 2011, 123:933-944.
    • (2011) Circulation , vol.123 , pp. 933-944
    • Heidenreich, P.A.1    Trogdon, J.G.2    Khavjou, O.A.3
  • 3
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • Meystre S.M., Savova G.K., Kipper-Schuler K.C., et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearbook Med. Inf. 2008, 128-144.
    • (2008) Yearbook Med. Inf. , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3
  • 4
    • 70349467729 scopus 로고    scopus 로고
    • What can natural language processing do for clinical decision support?
    • Demner-Fushman D., Chapman W.W., McDonald C.J. What can natural language processing do for clinical decision support?. J. Biomed. Inform. 2009, 42:760-772.
    • (2009) J. Biomed. Inform. , vol.42 , pp. 760-772
    • Demner-Fushman, D.1    Chapman, W.W.2    McDonald, C.J.3
  • 5
    • 84872022133 scopus 로고    scopus 로고
    • Mining electronic health records in the genomics era
    • Denny J.C. Mining electronic health records in the genomics era. PLoS Comput. Biol. 2012, 8:e1002823.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002823
    • Denny, J.C.1
  • 6
    • 84883747248 scopus 로고    scopus 로고
    • Natural language processing: state of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine
    • Friedman C., Rindflesch T.C., Corn M. Natural language processing: state of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine. J. Biomed. Inform. 2013, 46:765-773.
    • (2013) J. Biomed. Inform. , vol.46 , pp. 765-773
    • Friedman, C.1    Rindflesch, T.C.2    Corn, M.3
  • 7
    • 84921899831 scopus 로고    scopus 로고
    • Natural language processing in biomedicine: a unified system architecture overview
    • Doan S., Conway M., Phuong T.M., et al. Natural language processing in biomedicine: a unified system architecture overview. Methods Mol. Biol. Clifton NJ 2014, 1168:275-294.
    • (2014) Methods Mol. Biol. Clifton NJ , vol.1168 , pp. 275-294
    • Doan, S.1    Conway, M.2    Phuong, T.M.3
  • 9
    • 34548516061 scopus 로고    scopus 로고
    • Identifying patient smoking status from medical discharge records
    • Uzuner Ö., Goldstein I., Luo Y., et al. Identifying patient smoking status from medical discharge records. J. Am. Med. Inform. Assoc. 2008, 15:14-24.
    • (2008) J. Am. Med. Inform. Assoc. , vol.15 , pp. 14-24
    • Uzuner, Ö.1    Goldstein, I.2    Luo, Y.3
  • 10
    • 84909966540 scopus 로고    scopus 로고
    • Patient status classification by using rule based sentence extraction and BM25 kNN-based classifier
    • E. Aramaki, T. Imai, K. Miyo, et al., Patient status classification by using rule based sentence extraction and BM25 kNN-based classifier, in: Proc. of the i2b2 Workshop, 2006.
    • (2006) Proc. of the i2b2 Workshop
    • Aramaki, E.1    Imai, T.2    Miyo, K.3
  • 11
    • 36749043607 scopus 로고    scopus 로고
    • Identifying smokers with a medical extraction system
    • Clark C., Good K., Jezierny L., et al. Identifying smokers with a medical extraction system. J. Am. Med. Inform. Assoc. 2008, 15:36-39.
    • (2008) J. Am. Med. Inform. Assoc. , vol.15 , pp. 36-39
    • Clark, C.1    Good, K.2    Jezierny, L.3
  • 12
    • 36749057750 scopus 로고    scopus 로고
    • Five-way smoking status classification using text hot-spot identification and error-correcting output codes
    • Cohen A.M. Five-way smoking status classification using text hot-spot identification and error-correcting output codes. J. Am. Med. Inform. Assoc. JAMIA 2008, 15:32-35.
    • (2008) J. Am. Med. Inform. Assoc. JAMIA , vol.15 , pp. 32-35
    • Cohen, A.M.1
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 84869006990 scopus 로고    scopus 로고
    • A hybrid model for automatic emotion recognition in suicide notes
    • Yang H., Willis A., et al. A hybrid model for automatic emotion recognition in suicide notes. Biomed. Inform. Insights 2012, 17.
    • (2012) Biomed. Inform. Insights , vol.17
    • Yang, H.1    Willis, A.2
  • 16
    • 84940707615 scopus 로고    scopus 로고
    • Annotating risk factors for heart disease in clinical narratives for diabetic patients
    • Stubbs A., Uzuner Ö. Annotating risk factors for heart disease in clinical narratives for diabetic patients. J. Biomed. Inform. 2015, 58S:S78-S91.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S78-S91
    • Stubbs, A.1    Uzuner, Ö.2
  • 17
    • 84940056554 scopus 로고    scopus 로고
    • Identifying risk factors for heart disease over time: overview of 2014 i2b2/UTHealth shared task Track 2
    • Stubbs A., Kotfila C., Xu H., et al. Identifying risk factors for heart disease over time: overview of 2014 i2b2/UTHealth shared task Track 2. J. Biomed. Inform. 2015, 58S:S67-S77.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S67-S77
    • Stubbs, A.1    Kotfila, C.2    Xu, H.3
  • 18
    • 7444236194 scopus 로고    scopus 로고
    • UIMA: an architectural approach to unstructured information processing in the corporate research environment
    • Ferrucci D., Lally A. UIMA: an architectural approach to unstructured information processing in the corporate research environment. Nat. Lang. Eng. 2004, 10:327-348.
    • (2004) Nat. Lang. Eng. , vol.10 , pp. 327-348
    • Ferrucci, D.1    Lally, A.2
  • 19
    • 85035782630 scopus 로고    scopus 로고
    • ClearTK 2.0: Design patterns for machine learning in UIMA
    • Proceedings of the Ninth International Conference on Language Resource and Evaluation (LREC'14)
    • S. Bethard, P. Ogren, L. Becker. ClearTK 2.0: Design patterns for machine learning in UIMA. in: Proceedings of the Ninth International Conference on Language Resource and Evaluation (LREC'14), 2014, pp. 3289-3393.
    • (2014) , pp. 3289-3393
    • Bethard, S.1    Ogren, P.2    Becker, L.3
  • 20
    • 84922051496 scopus 로고    scopus 로고
    • Disorder concept identification from clinical notes: an experience with the ShARe/CLEF 2013 challenge
    • Valencia, Spain
    • J. Fan, N. Sood, Y. Huang, Disorder concept identification from clinical notes: an experience with the ShARe/CLEF 2013 challenge. In: Online Working Notes of the CLEF 2013 Evaluation Labs and Workshop. Valencia, Spain, 2013.
    • (2013) Online Working Notes of the CLEF 2013 Evaluation Labs and Workshop
    • Fan, J.1    Sood, N.2    Huang, Y.3
  • 22
    • 84873873123 scopus 로고    scopus 로고
    • Part-of-speech tagging for clinical text: wall or bridge between institutions?
    • Fan J., Prasad R., Yabut R.M., et al. Part-of-speech tagging for clinical text: wall or bridge between institutions?. AMIA Annu. Symp. Proc. AMIA Symp. AMIA Symp. 2011, 2011:382-391.
    • (2011) AMIA Annu. Symp. Proc. AMIA Symp. AMIA Symp. , vol.2011 , pp. 382-391
    • Fan, J.1    Prasad, R.2    Yabut, R.M.3
  • 23
    • 77950477064 scopus 로고    scopus 로고
    • MedEx: a medication information extraction system for clinical narratives
    • Xu H., Stenner S.P., Doan S., et al. MedEx: a medication information extraction system for clinical narratives. J. Am. Med. Inform. Assoc. JAMIA 2010, 17:19-24.
    • (2010) J. Am. Med. Inform. Assoc. JAMIA , vol.17 , pp. 19-24
    • Xu, H.1    Stenner, S.P.2    Doan, S.3
  • 25
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 2003, 3:1289-1305.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 28
    • 44649134672 scopus 로고    scopus 로고
    • Identification of transcription factor contexts in literature using machine learning approaches
    • Yang H., Nenadic G., Keane J.A. Identification of transcription factor contexts in literature using machine learning approaches. BMC Bioinf. 2008, 9.
    • (2008) BMC Bioinf. , pp. 9
    • Yang, H.1    Nenadic, G.2    Keane, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.