메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages S111-S119

The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs

Author keywords

Machine learning; Natural language annotation; Natural language processing

Indexed keywords

ARTIFICIAL INTELLIGENCE; CARDIOLOGY; CHARACTER RECOGNITION; COMPUTATIONAL LINGUISTICS; DISEASES; LEARNING ALGORITHMS; LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; RISK ASSESSMENT; SEMANTICS; SUPERVISED LEARNING;

EID: 84936803802     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.06.010     Document Type: Article
Times cited : (28)

References (29)
  • 1
    • 84948823441 scopus 로고    scopus 로고
    • Practical applications for NLP in clinical research: the 2014 i2b2/UTHealth shared tasks
    • Stubbs Amber, Kotfila Christopher, Xu Hua, Uzuner Özlem Practical applications for NLP in clinical research: the 2014 i2b2/UTHealth shared tasks. J. Biomed. Inform. 2015, 58S:S1-S5.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S1-S5
    • Stubbs, A.1    Kotfila, C.2    Xu, H.3    Özlem, U.4
  • 2
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner Özlem, South Brett, Shen Shuying, DuVall Scott L. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Inform. Assoc. 2011, 18:552-556.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , pp. 552-556
    • Uzuner, Özlem1    South, B.2    Shen, S.3    DuVall, S.L.4
  • 3
  • 4
    • 84882744737 scopus 로고    scopus 로고
    • Evaluating temporal relations in clinical text: 2012 i2b2 challenge overview
    • Sun Weiyi, Rumshisky Anna, Uzuner Özlem Evaluating temporal relations in clinical text: 2012 i2b2 challenge overview. J. Am. Med. Inform. Assoc. 2013, 20(5):806-813.
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , Issue.5 , pp. 806-813
    • Sun, W.1    Rumshisky, A.2    Uzuner, Özlem3
  • 5
    • 70349467729 scopus 로고    scopus 로고
    • What can natural language processing do for clinical decision support?
    • Demner-Fushman Dina, Chapman Wendy W., McDonald Clement J. What can natural language processing do for clinical decision support?. J. Biomed. Inform. 2009, 42(5):760-772.
    • (2009) J. Biomed. Inform. , vol.42 , Issue.5 , pp. 760-772
    • Demner-Fushman, D.1    Chapman, W.W.2    McDonald, C.J.3
  • 6
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: historical perspective and recent advances
    • Aronson A.R., Lang F.-M. An overview of MetaMap: historical perspective and recent advances. J. Am. Med. Inform. Assoc. 2010, 17:229-236.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , pp. 229-236
    • Aronson, A.R.1    Lang, F.-M.2
  • 7
    • 0034567167 scopus 로고    scopus 로고
    • A broad-coverage natural language processing system
    • Carol Friedman, A broad-coverage natural language processing system, in: Proceedings of the AMIA Annual Symposium, 2000, pp. 270-274.
    • (2000) Proceedings of the AMIA Annual Symposium , pp. 270-274
    • Friedman, C.1
  • 8
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova Guergana K., Masanz James J., Ogren Philip V., Zheng Jiaping, Sohn Sunghwan, Kipper-Schuler Karin C., Chute Christopher G. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inform. Assoc. 2010, 17:507-513.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3    Zheng, J.4    Sohn, S.5    Kipper-Schuler, K.C.6    Chute, C.G.7
  • 9
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman Wendy W., Bridewell Will, Hanbury Paul, Cooper Gregory F., Buchanan Bruce G. A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 2001, 34(5):301-310.
    • (2001) J. Biomed. Inform. , vol.34 , Issue.5 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3    Cooper, G.F.4    Buchanan, B.G.5
  • 10
    • 70349470770 scopus 로고    scopus 로고
    • ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports
    • Harkema Henk, Dowling John N., Thornblade Tyler, Chapman Wendy W. ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports. J. Biomed. Inform. 2009, 42(5):839-851.
    • (2009) J. Biomed. Inform. , vol.42 , Issue.5 , pp. 839-851
    • Harkema, H.1    Dowling, J.N.2    Thornblade, T.3    Chapman, W.W.4
  • 12
    • 34548508913 scopus 로고    scopus 로고
    • Evaluating the state-of-the-art in automatic de-identification
    • Uzuner Özlem, Luo Yuan, Szolovits Peter Evaluating the state-of-the-art in automatic de-identification. J. Am. Med. Inform. Assoc. 2007, 14(5):550-563.
    • (2007) J. Am. Med. Inform. Assoc. , vol.14 , Issue.5 , pp. 550-563
    • Uzuner, Özlem1    Luo, Y.2    Szolovits, P.3
  • 13
    • 34548516061 scopus 로고    scopus 로고
    • Identifying patient smoking status from medical discharge records
    • Uzuner Özlem, Goldstein Ira, Luo Yuan, Kohane Isaac Identifying patient smoking status from medical discharge records. J. Am. Med. Inform. Assoc. 2008, 15(1):15-24.
    • (2008) J. Am. Med. Inform. Assoc. , vol.15 , Issue.1 , pp. 15-24
    • Uzuner, Özlem1    Goldstein, I.2    Luo, Y.3    Kohane, I.4
  • 14
    • 67649352145 scopus 로고    scopus 로고
    • Recognizing obesity and co-morbidities in sparse data
    • Uzuner Özlem Recognizing obesity and co-morbidities in sparse data. J. Am. Med. Inform. Assoc. 2009, 16(4):561-570.
    • (2009) J. Am. Med. Inform. Assoc. , vol.16 , Issue.4 , pp. 561-570
    • Uzuner, Özlem1
  • 15
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner Özlem, Solti Imre, Cadag Eithon Extracting medication information from clinical text. J. Am. Med. Inform. Assoc. 2010, 17:514-518.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , pp. 514-518
    • Uzuner, Özlem1    Solti, I.2    Cadag, E.3
  • 17
    • 38449114048 scopus 로고    scopus 로고
    • Medication reconciliation using natural language processing and controlled terminologies
    • James J. Cimino, Tiffani J. Bright, Jianhua Li, Medication reconciliation using natural language processing and controlled terminologies, in: Studies in Health Technology and Informatics (MEDINFO), 2007, pp. 679-683.
    • (2007) Studies in Health Technology and Informatics (MEDINFO) , pp. 79-683
    • Cimino, J.J.1    Bright, T.J.2    Li, J.3
  • 18
    • 73949089302 scopus 로고    scopus 로고
    • Extracting structured medication event information from discharge summaries
    • S. Gold, N. Elhadad, X. Zhu, J.J. Cimino, G. Hripcsak
    • Sigfried Gold, Noémie Elhadad, Xinxin Zhu, James J. Cimino, George Hripcsak, Extracting structured medication event information from discharge summaries, in: Proceedings of the AMIA Annual Symposium, 2008, pp. 237-241.
    • (2008) Proceedings of the AMIA Annual Symposium , pp. 237-241
  • 19
    • 70349450087 scopus 로고    scopus 로고
    • Identification and extraction of family history information from clinical reports
    • Sergey Goryachev, Hyeoneui Kim, Qing Zeng-Treitler, Identification and extraction of family history information from clinical reports, in: Proceedings of the AMIA Annual Symposium, 2008, pp. 247-251.
    • (2008) Proceedings of the AMIA Annual Symposium , pp. 247-251
    • Goryachev, S.1    Kim, H.2    Zeng-Treitler, Q.3
  • 21
    • 34748879356 scopus 로고    scopus 로고
    • Using a natural language processing system to extract and code family history data from admission reports
    • Jeff Friedlin, Clement J. McDonald, Using a natural language processing system to extract and code family history data from admission reports, in: Proceedings of the AMIA Annual Symposium, 2006, p. 925.
    • (2006) Proceedings of the AMIA Annual Symposium , pp. 925
    • Friedlin, J.1    McDonald, C.J.2
  • 22
    • 33745845169 scopus 로고    scopus 로고
    • A temporal constraint structure for extracting temporal information from clinical narrative
    • Zhou Li, Melton Genevieve B., Parsons Simon, Hripcsak George A temporal constraint structure for extracting temporal information from clinical narrative. J. Biomed. Inform. 2006, 39(4):424-439.
    • (2006) J. Biomed. Inform. , vol.39 , Issue.4 , pp. 424-439
    • Zhou, L.1    Melton, G.B.2    Parsons, S.3    Hripcsak, G.4
  • 24
    • 84965090739 scopus 로고    scopus 로고
    • Knowledge-rich temporal relation identification and classification in clinical notes
    • Jennifer D'Souza, Vincent Ng, Knowledge-rich temporal relation identification and classification in clinical notes, Database, 2014, pp. 1-20.
    • (2014) Database , pp. 1-20
    • D'Souza, J.1    Vincent, N.G2
  • 25
    • 84940707615 scopus 로고    scopus 로고
    • Annotating risk factors for heart disease in clinical narratives for diabetic patients
    • Stubbs Amber, Uzuner Özlem Annotating risk factors for heart disease in clinical narratives for diabetic patients. J. Biomed. Inform. 2015, 58S:S78-S91.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S78-S91
    • Stubbs, A.1    Uzuner, Özlem2
  • 29
    • 84890064920 scopus 로고    scopus 로고
    • DNorm: disease name normalization with pairwise learning to rank
    • Leaman Robert, Doğan Rezarta Islamaj, Lu Zhiyong DNorm: disease name normalization with pairwise learning to rank. Bioinformatics 2013, 29(22):2909-2917.
    • (2013) Bioinformatics , vol.29 , Issue.22 , pp. 2909-2917
    • Leaman, R.1    Doğan, R.I.2    Lu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.