메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages S183-S188

Using local lexicalized rules to identify heart disease risk factors in clinical notes

Author keywords

Heart disease; Risk factors; Rule based modelling; Text mining; Vocabularies

Indexed keywords

CARDIOLOGY; COMPUTER AIDED DESIGN; COMPUTER AIDED DIAGNOSIS; DATA HANDLING; HEART; NATURAL LANGUAGE PROCESSING SYSTEMS; RISK ASSESSMENT; TEXT MINING;

EID: 84939817187     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.06.013     Document Type: Article
Times cited : (24)

References (23)
  • 1
    • 84977558468 scopus 로고    scopus 로고
    • The Top 10 Causes of Death.
    • World Health Organization. The Top 10 Causes of Death. http://www.who.int/mediacentre/factsheets/fs310/en/.
  • 2
    • 84921770937 scopus 로고    scopus 로고
    • High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study
    • Shah A.S.V., Griffiths M., Ken K.L., McAllister D.A., Hunter A.L., Ferry A.V., Cruikshank A., et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ 2015, 350:g7873.
    • (2015) BMJ , vol.350 , pp. g7873
    • Shah, A.S.V.1    Griffiths, M.2    Ken, K.L.3    McAllister, D.A.4    Hunter, A.L.5    Ferry, A.V.6    Cruikshank, A.7
  • 3
    • 84948823441 scopus 로고    scopus 로고
    • Practical Applications for NLP in Clinical Research: the 2014 i2b2/UTHealth Shared Tasks
    • A. Stubbs, C. Kotfila, H. Xu, Ö. Uzuner, Practical Applications for NLP in Clinical Research: the 2014 i2b2/UTHealth Shared Tasks, J. Biomed. Inform 58S (2015) S1-S5.
    • (2015) J. Biomed. Inform , vol.58S , pp. S1-S5
    • Stubbs, A.1    Kotfila, C.2    Xu, H.3    Uzuner, Ö.4
  • 4
    • 4544280638 scopus 로고    scopus 로고
    • Automated encoding of clinical documents based on natural language processing
    • [Epub 2004 June 7]
    • Friedman C., Shagina L., Lussier Y.A., Hripcsak G. Automated encoding of clinical documents based on natural language processing. J. Am. Med. Inform. Assoc. 2004, 11(5):392-402. [Epub 2004 June 7].
    • (2004) J. Am. Med. Inform. Assoc. , vol.11 , Issue.5 , pp. 392-402
    • Friedman, C.1    Shagina, L.2    Lussier, Y.A.3    Hripcsak, G.4
  • 5
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications
    • Savova G.K., Masanz J.J., Ogren P.V., Zheng J., Sohn S., Kiper-Schuler K.C., Chute C.G. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inform. Assoc. 2010, 17(5):507-513.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.5 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3    Zheng, J.4    Sohn, S.5    Kiper-Schuler, K.C.6    Chute, C.G.7
  • 6
    • 84925884336 scopus 로고    scopus 로고
    • Text mining of cancer-related information: review of current status and future directions
    • Spasić I., Livsey J., Keane J.A., Nenadic G. Text mining of cancer-related information: review of current status and future directions. Int. J. Med. Inform. 2014, 83(9):605-623. 10.1016/j.ijmedinf.2014.06.009.
    • (2014) Int. J. Med. Inform. , vol.83 , Issue.9 , pp. 605-623
    • Spasić, I.1    Livsey, J.2    Keane, J.A.3    Nenadic, G.4
  • 7
    • 84863544591 scopus 로고    scopus 로고
    • Drug side effect extraction from clinical narratives of psychiatry and psychology patients
    • Sohn S., Kocher J.P.A., Chute C.G., Savova G.K. Drug side effect extraction from clinical narratives of psychiatry and psychology patients. J. Am. Med. Inform. Assoc. 2011, 18(Suppl 1):i144-i149.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , pp. i144-i149
    • Sohn, S.1    Kocher, J.P.A.2    Chute, C.G.3    Savova, G.K.4
  • 8
    • 70349450087 scopus 로고    scopus 로고
    • Identification and extraction of family history information from clinical reports, in: AMIA Annual Symposium Proceedings
    • S. Goryachev, K. Hyeoneui, Z.T. Qing, Identification and extraction of family history information from clinical reports, in: AMIA Annual Symposium Proceedings, vol. 2008, American Medical Informatics Association, 2008.
    • (2008) , vol.2008
    • Goryachev, S.1    Hyeoneui, K.2    Qing, Z.T.3
  • 10
    • 78149487508 scopus 로고    scopus 로고
    • High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge
    • Patrick J., Min Li. High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. J. Am. Med. Inform. Assoc. 2009, 17(2010):524-527.
    • (2009) J. Am. Med. Inform. Assoc. , vol.17 , Issue.2010 , pp. 524-527
    • Patrick, J.1    Min, L.2
  • 11
    • 78149480800 scopus 로고    scopus 로고
    • Medication information extraction with linguistic pattern matching and semantic rules
    • Spasic I., Sarafraz F., Keane A.J., Nenadic G. Medication information extraction with linguistic pattern matching and semantic rules. J. Am. Med. Inform. Assoc. 2010, 17:532-535.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , pp. 532-535
    • Spasic, I.1    Sarafraz, F.2    Keane, A.J.3    Nenadic, G.4
  • 12
    • 78149479051 scopus 로고    scopus 로고
    • Automatic extraction of medication information from medical discharge summaries
    • Yang H. Automatic extraction of medication information from medical discharge summaries. J. Am. Med. Inform. Assoc. 2010, 17:545-548.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , pp. 545-548
    • Yang, H.1
  • 13
    • 80053268344 scopus 로고    scopus 로고
    • Automatic extraction of relations between medical concepts in clinical texts
    • Rink B., Harabagiu S., Kirk R. Automatic extraction of relations between medical concepts in clinical texts. J. Am. Med. Inform. Assoc. 2011, 18(5):594-600.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , Issue.5 , pp. 594-600
    • Rink, B.1    Harabagiu, S.2    Kirk, R.3
  • 14
    • 84856376731 scopus 로고    scopus 로고
    • Enhancing clinical concept extraction with distributional semantics
    • Jonnalagadda S., Cohen T., Wu S., Gonzalez G. Enhancing clinical concept extraction with distributional semantics. J. Biomed. Inform. 2012, 45(1):129-140.
    • (2012) J. Biomed. Inform. , vol.45 , Issue.1 , pp. 129-140
    • Jonnalagadda, S.1    Cohen, T.2    Wu, S.3    Gonzalez, G.4
  • 15
    • 84872242834 scopus 로고    scopus 로고
    • Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries
    • Xu Y., Hong K., Tsujii J., I-Chao Chang E. Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries. J. Am. Med. Inform. Assoc. 2012, 19:824-832. 10.1136/amiajnl-2011-000776.
    • (2012) J. Am. Med. Inform. Assoc. , vol.19 , pp. 824-832
    • Xu, Y.1    Hong, K.2    Tsujii, J.3    I-Chao Chang, E.4
  • 17
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner Ö., Solti I., Cadag E. Extracting medication information from clinical text. J. Am. Med. Inform. Assoc. 2010, 17(5):514-518.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.5 , pp. 514-518
    • Uzuner, Ö.1    Solti, I.2    Cadag, E.3
  • 18
    • 84860595742 scopus 로고    scopus 로고
    • Recognition of medication information from discharge summaries using ensembles of classifiers
    • Doan S., Colier N., Xu H., Duy H.P., Phuong M.T. Recognition of medication information from discharge summaries using ensembles of classifiers. BMC Med. Inform. Decis. Mak. 2012, 12:36.
    • (2012) BMC Med. Inform. Decis. Mak. , vol.12 , pp. 36
    • Doan, S.1    Colier, N.2    Xu, H.3    Duy, H.P.4    Phuong, M.T.5
  • 19
    • 78149474640 scopus 로고    scopus 로고
    • Extracting medication information from narrative patient records: the case of medication-related information
    • Deleger L., Grouin C., Zweigenbaum P. Extracting medication information from narrative patient records: the case of medication-related information. J. Am. Med. Inform. Assoc. 2010, 17(5):555-558.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.5 , pp. 555-558
    • Deleger, L.1    Grouin, C.2    Zweigenbaum, P.3
  • 20
    • 67649352145 scopus 로고    scopus 로고
    • Recognizing obesity and comorbidities in sparse data
    • Uzuner Ö. Recognizing obesity and comorbidities in sparse data. J. Am. Med. Inform. Assoc. 2009, 16(4):561-570. 10.1197/jamia.M3115.
    • (2009) J. Am. Med. Inform. Assoc. , vol.16 , Issue.4 , pp. 561-570
    • Uzuner, Ö.1
  • 21
    • 84977598977 scopus 로고    scopus 로고
    • UMLS, 2014. http://www.nlm.nih.gov/research/umls/.
    • (2014)
  • 23
    • 84882747799 scopus 로고    scopus 로고
    • Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives
    • A. Kovacevic, A. Dehghan, M. Filannino, J. Keane, G. Nenadic, Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives, J. Am. Med. Inform. Assoc. doi:10.1136/amiajnl-2013-00.
    • J. Am. Med. Inform. Assoc.
    • Kovacevic, A.1    Dehghan, A.2    Filannino, M.3    Keane, J.4    Nenadic, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.