메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages S158-S163

An automatic system to identify heart disease risk factors in clinical texts over time

Author keywords

Clinical information extraction; Heart disease; Machine learning; Risk factor identification

Indexed keywords

ARTIFICIAL INTELLIGENCE; CARDIOLOGY; DISEASES; HEART; LEARNING ALGORITHMS; LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84941670321     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.09.002     Document Type: Article
Times cited : (38)

References (36)
  • 2
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova G.K., Masanz J.J., Ogren P.V., Zheng J., Sohn S., Kipper-Schuler K.C., Chute C.G. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inf. Assoc. 2010, 17(5):507-513.
    • (2010) J. Am. Med. Inf. Assoc. , vol.17 , Issue.5 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3    Zheng, J.4    Sohn, S.5    Kipper-Schuler, K.C.6    Chute, C.G.7
  • 3
    • 84977479964 scopus 로고    scopus 로고
    • Practical applications for NLP in Clinical Research: the 2014 i2b2/UTHealth shared tasks
    • S. Amber, K. Christopher, X. Hua, Ö. Uzuner, Practical applications for NLP in Clinical Research: the 2014 i2b2/UTHealth shared tasks, J. Biomed. Inform. 58S (2015) S1-S5.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S1-S5
    • Amber, S.1    Christopher, K.2    Hua, X.3    Ö., Uzuner4
  • 4
    • 84977541936 scopus 로고    scopus 로고
    • Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records
    • R.J. Byrd, S.R. Steinhubl, J. Sun, S. Ebadollahi, W.F. Stewart, Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records, Int. J. Med. Inf. <. http://www.sciencedirect.com/science/article/pii/S1386505612002468.>
    • Int. J. Med. Inf.
    • Byrd, R.J.1    Steinhubl, S.R.2    Sun, J.3    Ebadollahi, S.4    Stewart, W.F.5
  • 5
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner Ã., South B.R., Shen S., DuVall S.L. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Inf. Assoc.: JAMIA 2011, 18(5):552-556. 10.1136/amiajnl-2011-000203.
    • (2011) J. Am. Med. Inf. Assoc.: JAMIA , vol.18 , Issue.5 , pp. 552-556
    • Uzuner, Ã.1    South, B.R.2    Shen, S.3    DuVall, S.L.4
  • 6
    • 80053268343 scopus 로고    scopus 로고
    • Using machine learning for concept extraction on clinical documents from multiple data sources
    • Torii M., Wagholikar K., Liu H. Using machine learning for concept extraction on clinical documents from multiple data sources. J. Am. Med. Inf. Assoc.: JAMIA 2011, 18(5):580-587. 10.1136/amiajnl-2011-000155.
    • (2011) J. Am. Med. Inf. Assoc.: JAMIA , vol.18 , Issue.5 , pp. 580-587
    • Torii, M.1    Wagholikar, K.2    Liu, H.3
  • 11
    • 34548516061 scopus 로고    scopus 로고
    • Identifying patient smoking status from medical discharge records
    • Uzuner Ö., Goldstein I., Luo Y., Kohane I. Identifying patient smoking status from medical discharge records. J. Am. Med. Inf. Assoc.: JAMIA 2008, 15(1):14-24. 10.1197/jamia.M2408.
    • (2008) J. Am. Med. Inf. Assoc.: JAMIA , vol.15 , Issue.1 , pp. 14-24
    • Uzuner, Ö.1    Goldstein, I.2    Luo, Y.3    Kohane, I.4
  • 12
    • 36749057750 scopus 로고    scopus 로고
    • Five-way smoking status classification using text hot-spot identification and error-correcting output codes
    • Cohen A.M. Five-way smoking status classification using text hot-spot identification and error-correcting output codes. J. Am. Med. Inf. Assoc.: JAMIA 2008, 15(1):32-35.
    • (2008) J. Am. Med. Inf. Assoc.: JAMIA , vol.15 , Issue.1 , pp. 32-35
    • Cohen, A.M.1
  • 14
    • 36749066006 scopus 로고    scopus 로고
    • Using implicit information to identify smoking status in smoke-blind medical discharge summaries
    • Wicentowski R., Sydes M.R. Using implicit information to identify smoking status in smoke-blind medical discharge summaries. J. Am. Med. Inf. Assoc.: JAMIA 2008, 15(1):29-31.
    • (2008) J. Am. Med. Inf. Assoc.: JAMIA , vol.15 , Issue.1 , pp. 29-31
    • Wicentowski, R.1    Sydes, M.R.2
  • 15
    • 36749040178 scopus 로고    scopus 로고
    • Medical i2b2 NLP smoking challenge: the a-life system architecture and methodology
    • Heinze D.T., Morsch M.L., Potter B.C., Sheffer R.E. Medical i2b2 NLP smoking challenge: the a-life system architecture and methodology. J. Am. Med. Inf. Assoc.: JAMIA 2008, 15(1):40-43.
    • (2008) J. Am. Med. Inf. Assoc.: JAMIA , vol.15 , Issue.1 , pp. 40-43
    • Heinze, D.T.1    Morsch, M.L.2    Potter, B.C.3    Sheffer, R.E.4
  • 16
    • 67649352145 scopus 로고    scopus 로고
    • Recognizing obesity and comorbidities in sparse data
    • Uzuner Ö. Recognizing obesity and comorbidities in sparse data. J. Am. Med. Inf. Assoc.: JAMIA 2009, 16(4):561-570. 10.1197/jamia.M3115.
    • (2009) J. Am. Med. Inf. Assoc.: JAMIA , vol.16 , Issue.4 , pp. 561-570
    • Uzuner, Ö.1
  • 17
    • 67649342013 scopus 로고    scopus 로고
    • A text mining approach to the prediction of disease status from clinical discharge summaries
    • Yang H., Spasic I., Keane J.A., Nenadic G. A text mining approach to the prediction of disease status from clinical discharge summaries. J. Am. Med. Inf. Assoc.: JAMIA 2009, 16(4):596-600. 10.1197/jamia.M3096.
    • (2009) J. Am. Med. Inf. Assoc.: JAMIA , vol.16 , Issue.4 , pp. 596-600
    • Yang, H.1    Spasic, I.2    Keane, J.A.3    Nenadic, G.4
  • 18
    • 80053241946 scopus 로고    scopus 로고
    • Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010
    • de Bruijn B., Cherry C., Kiritchenko S., Martin J., Zhu X. Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. J. Am. Med. Inf. Assoc.: JAMIA 2011, 18(5):557-562. 10.1136/amiajnl-2011-000150.
    • (2011) J. Am. Med. Inf. Assoc.: JAMIA , vol.18 , Issue.5 , pp. 557-562
    • de Bruijn, B.1    Cherry, C.2    Kiritchenko, S.3    Martin, J.4    Zhu, X.5
  • 19
    • 80053271549 scopus 로고    scopus 로고
    • A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
    • Jiang M., Chen Y., Liu M., Rosenbloom S.T., Mani S., Denny J.C., Xu H. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J. Am. Med. Inf. Assoc.: JAMIA 2011, 18(5):601-606. 10.1136/amiajnl-2011-000163.
    • (2011) J. Am. Med. Inf. Assoc.: JAMIA , vol.18 , Issue.5 , pp. 601-606
    • Jiang, M.1    Chen, Y.2    Liu, M.3    Rosenbloom, S.T.4    Mani, S.5    Denny, J.C.6    Xu, H.7
  • 22
    • 84882744737 scopus 로고    scopus 로고
    • Evaluating temporal relations in clinical text: 2012 i2b2 challenge
    • (amiajnl-2013).
    • W. Sun, A. Rumshisky, Ö. Uzuner, Evaluating temporal relations in clinical text: 2012 i2b2 challenge, J. Am. Med. Inf. Assoc. (2013) (amiajnl-2013).
    • (2013) J. Am. Med. Inf. Assoc.
    • Sun, W.1    Rumshisky, A.2    Uzuner, Ö.3
  • 23
    • 84881139675 scopus 로고    scopus 로고
    • A hybrid system for temporal information extraction from clinical text
    • Tang B., Wu Y., Jiang M., Chen Y., Denny J.C., Xu H. A hybrid system for temporal information extraction from clinical text. J. Am. Med. Inf. Assoc.: JAMIA 2013, 20(5):828-835. 10.1136/amiajnl-2013-001635.
    • (2013) J. Am. Med. Inf. Assoc.: JAMIA , vol.20 , Issue.5 , pp. 828-835
    • Tang, B.1    Wu, Y.2    Jiang, M.3    Chen, Y.4    Denny, J.C.5    Xu, H.6
  • 24
    • 84897042613 scopus 로고    scopus 로고
    • Classifying temporal relations in clinical data: a hybrid, knowledge-rich approach
    • D'Souza J., Ng V. Classifying temporal relations in clinical data: a hybrid, knowledge-rich approach. J. Biomed. Inf. 2013, 46:S29-S39. 10.1016/j.jbi.2013.08.003.
    • (2013) J. Biomed. Inf. , vol.46 , pp. S29-S39
    • D'Souza, J.1    Ng, V.2
  • 25
    • 84940707615 scopus 로고    scopus 로고
    • Annotating risk factors for heart disease in clinical narratives for diabetic patients
    • A. Stubbs, Ö. Uzuner, Annotating risk factors for heart disease in clinical narratives for diabetic patients, J. Biomed. Inform. 58S (2015) S78-S91. doi:. doi:10.1016/j.jbi.2015.05.009.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S78-S91
    • Stubbs, A.1    Uzuner, Ö.2
  • 28
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • Joachims T., Finley T., Yu C.-N.J. Cutting-plane training of structural SVMs. Mach. Learn. 2009, 77(1):27-59.
    • (2009) Mach. Learn. , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.J.3
  • 29
    • 84945535937 scopus 로고    scopus 로고
    • Automatic de-identification of electronic medical records using token-level and character-level conditional random fields
    • Z. Liu, Y. Chen, B. Tang, X. Wang, Q. Chen, H. Li, J. Wang, Q. Deng, S. Zhu, Automatic de-identification of electronic medical records using token-level and character-level conditional random fields, J. Biomed. Inform. 58S (2015) S47-S52. doi:. doi:10.1016/j.jbi.2015.06.009.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S47-S52
    • Liu, Z.1    Chen, Y.2    Tang, B.3    Wang, X.4    Chen, Q.5    Li, H.6    Wang, J.7    Deng, Q.8    Zhu, S.9
  • 31
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman W.W., Bridewell W., Hanbury P., Cooper G.F., Buchanan B.G. A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inf. 2001, 34(5):301-310. . 10.1006/jbin.2001.1029.
    • (2001) J. Biomed. Inf. , vol.34 , Issue.5 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3    Cooper, G.F.4    Buchanan, B.G.5
  • 32
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • Zhang M.-L., Zhou Z.-H. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 2014, 26(8):1819-1837. 10.1109/TKDE.2013.39.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.8 , pp. 1819-1837
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 33
    • 84882747799 scopus 로고    scopus 로고
    • Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives
    • Kovacevic A., Dehghan A., Filannino M., Keane J.A., Nenadic G. Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives. J. Am. Med. Inf. Assoc. 2013, 20(5):859-866.
    • (2013) J. Am. Med. Inf. Assoc. , vol.20 , Issue.5 , pp. 859-866
    • Kovacevic, A.1    Dehghan, A.2    Filannino, M.3    Keane, J.A.4    Nenadic, G.5
  • 35
    • 0345863927 scopus 로고    scopus 로고
    • The unified medical language system (UMLS): integrating biomedical terminology
    • Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucl. Acids Res. 2004, 32(suppl 1):D267-D270.
    • (2004) Nucl. Acids Res. , vol.32 , pp. D267-D270
    • Bodenreider, O.1
  • 36
    • 0035753659 scopus 로고    scopus 로고
    • SNOMED clinical terms: overview of the development process and project status
    • M.Q. Stearns, C. Price, K.A. Spackman, A.Y. Wang, SNOMED clinical terms: overview of the development process and project status, in: Proceedings of the AMIA Symposium, 2001, pp. 662-666 <. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2243297/. >
    • (2001) Proceedings of the AMIA Symposium , pp. 662-666
    • Stearns, M.Q.1    Price, C.2    Spackman, K.A.3    Wang, A.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.