메뉴 건너뛰기




Volumn 16, Issue 7, 2015, Pages 771-775

Role of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic homeostasis

Author keywords

Free fatty acid receptors; Gut microbiota; Insulin resistance; Metabolic homeostasis; Short chain fatty acids; Type 2 diabetes

Indexed keywords

FREE FATTY ACID RECEPTOR 2; G PROTEIN COUPLED RECEPTOR; GLUCAGON LIKE PEPTIDE 1; ISOPRENALINE; SHORT CHAIN FATTY ACID; UNCLASSIFIED DRUG; CELL SURFACE RECEPTOR; G-PROTEIN COUPLED RECEPTOR 43, HUMAN;

EID: 84939800174     PISSN: 13894501     EISSN: 18735592     Source Type: Journal    
DOI: 10.2174/1389450116666150408103557     Document Type: Article
Times cited : (21)

References (48)
  • 2
    • 69549127966 scopus 로고    scopus 로고
    • Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis
    • Ichimura A, Hirasawa A, Hara T, Tsujimoto G. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Other Lipid Mediat 2009; 89(3-4): 82-8.
    • (2009) Prostaglandins Other Lipid Mediat , vol.89 , Issue.3-4 , pp. 82-88
    • Ichimura, A.1    Hirasawa, A.2    Hara, T.3    Tsujimoto, G.4
  • 4
    • 0038732634 scopus 로고    scopus 로고
    • Insulin secretion: Fatty acid signalling via serpentine receptors
    • Rutter GA. Insulin secretion: fatty acid signalling via serpentine receptors. Curr Biol 2003; 13(10): R403-5.
    • (2003) Curr Biol , vol.13 , Issue.10 , pp. R403-R405
    • Rutter, G.A.1
  • 5
    • 13444263540 scopus 로고    scopus 로고
    • Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120
    • Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005; 11(1): 90-4.
    • (2005) Nat Med , vol.11 , Issue.1 , pp. 90-94
    • Hirasawa, A.1    Tsumaya, K.2    Awaji, T.3
  • 6
    • 27944449329 scopus 로고    scopus 로고
    • Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion
    • Salehi A, Flodgren E, Nilsson NE, et al. Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res 2005 322(2): 207-15.
    • (2005) Cell Tissue Res , vol.322 , Issue.2 , pp. 207-215
    • Salehi, A.1    Flodgren, E.2    Nilsson, N.E.3
  • 7
    • 84873074797 scopus 로고    scopus 로고
    • Fatty acid binding receptors in intestinal physiology and pathophysiology
    • Kaemmerer E, Plum P, Klaus C, et al. Fatty acid binding receptors in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol 2010; 1(5): 147-53.
    • (2010) World J Gastrointest Pathophysiol , vol.1 , Issue.5 , pp. 147-153
    • Kaemmerer, E.1    Plum, P.2    Klaus, C.3
  • 8
    • 70349988797 scopus 로고    scopus 로고
    • G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell
    • Morgan NG, Dhayal S. G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell. Biochem Pharmacol 2009; 78(12): 1419-27.
    • (2009) Biochem Pharmacol , vol.78 , Issue.12 , pp. 1419-1427
    • Morgan, N.G.1    Dhayal, S.2
  • 9
    • 11844275233 scopus 로고    scopus 로고
    • A family of fatty acid binding receptors
    • Brown AJ, Jupe S, Briscoe CP. A family of fatty acid binding receptors. DNA Cell Biol 2005; 24(1): 54-61.
    • (2005) DNA Cell Biol , vol.24 , Issue.1 , pp. 54-61
    • Brown, A.J.1    Jupe, S.2    Briscoe, C.P.3
  • 10
    • 85047689124 scopus 로고    scopus 로고
    • Bacteria, colonic fermentation, and gastrointestinal health
    • Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012; 95(1): 50-60.
    • (2012) J AOAC Int , vol.95 , Issue.1 , pp. 50-60
    • Macfarlane, G.T.1    Macfarlane, S.2
  • 11
    • 84859587827 scopus 로고    scopus 로고
    • Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms
    • Lin HV, Frassetto A, Kowalik EJ Jr, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012; 7(4): e35240.
    • (2012) PLoS One , vol.7 , Issue.4
    • Lin, H.V.1    Frassetto, A.2    Kowalik, E.J.3
  • 13
    • 4444236381 scopus 로고    scopus 로고
    • Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium
    • Sanderson IR. Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. J Nutr 2004; 134(9): 2450S- 2454S.
    • (2004) J Nutr , vol.134 , Issue.9 , pp. 2450S-2454S
    • Sanderson, I.R.1
  • 14
    • 0034468542 scopus 로고    scopus 로고
    • Short-chain fatty acid in the human colon. Relation to inflammatory bowel diseases and colon cancer
    • D'Argenio G, Mazzacca G. Short-chain fatty acid in the human colon. Relation to inflammatory bowel diseases and colon cancer. Adv Exp Med Biol 1999; 472: 149-58.
    • (1999) Adv Exp Med Biol , vol.472 , pp. 149-158
    • D'Argenio, G.1    Mazzacca, G.2
  • 15
    • 0038363378 scopus 로고    scopus 로고
    • The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids
    • Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278(13): 11312-9.
    • (2003) J Biol Chem , vol.278 , Issue.13 , pp. 11312-11319
    • Brown, A.J.1    Goldsworthy, S.M.2    Barnes, A.A.3
  • 16
    • 0038491435 scopus 로고    scopus 로고
    • Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation
    • Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278(28): 25481-9.
    • (2003) J Biol Chem , vol.278 , Issue.28 , pp. 25481-25489
    • Le Poul, E.1    Loison, C.2    Struyf, S.3
  • 17
    • 0037453280 scopus 로고    scopus 로고
    • Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids
    • Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 2003; 303(4): 1047-52.
    • (2003) Biochem Biophys Res Commun , vol.303 , Issue.4 , pp. 1047-1052
    • Nilsson, N.E.1    Kotarsky, K.2    Owman, C.3    Olde, B.4
  • 18
    • 77950120729 scopus 로고    scopus 로고
    • GPR43: An emerging target for the potential treatment of type 2 diabetes, obesity and insulin resistance
    • Tiwari A. GPR43: an emerging target for the potential treatment of type 2 diabetes, obesity and insulin resistance. Curr Opin Investig Drugs 2010; 11(4): 385-93.
    • (2010) Curr Opin Investig Drugs , vol.11 , Issue.4 , pp. 385-393
    • Tiwari, A.1
  • 20
    • 84872102587 scopus 로고    scopus 로고
    • A novel therapeutic target, GPR43; where it stands in drug discovery
    • Kim S, Kim YM, Kwak YS. A novel therapeutic target, GPR43; where it stands in drug discovery. Arch Pharm Res 2012; 35(9): 1505-9.
    • (2012) Arch Pharm Res , vol.35 , Issue.9 , pp. 1505-1509
    • Kim, S.1    Kim, Y.M.2    Kwak, Y.S.3
  • 21
    • 84876018174 scopus 로고    scopus 로고
    • GPR43/FFA2: Physiopathological relevance and therapeutic prospects
    • Bindels LB, Dewulf EM, Delzenne NM. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 2013; 34(4): 226-32.
    • (2013) Trends Pharmacol Sci , vol.34 , Issue.4 , pp. 226-232
    • Bindels, L.B.1    Dewulf, E.M.2    Delzenne, N.M.3
  • 22
    • 84862130670 scopus 로고    scopus 로고
    • The adipocyte as an endocrine organ in the regulation of metabolic homeostasis
    • Harwood HJ Jr. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 2012; 63(1): 57-75.
    • (2012) Neuropharmacology , vol.63 , Issue.1 , pp. 57-75
    • Harwood, H.J.1
  • 23
    • 50449087891 scopus 로고    scopus 로고
    • Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids
    • Ge H, Li X, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 2008; 149(9): 4519-26.
    • (2008) Endocrinology , vol.149 , Issue.9 , pp. 4519-4526
    • Ge, H.1    Li, X.2    Weiszmann, J.3
  • 24
    • 27844440904 scopus 로고    scopus 로고
    • Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43
    • Hong YH, Nishimura Y, Hishikawa D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005; 146(12): 5092-9.
    • (2005) Endocrinology , vol.146 , Issue.12 , pp. 5092-5099
    • Hong, Y.H.1    Nishimura, Y.2    Hishikawa, D.3
  • 25
    • 70450044364 scopus 로고    scopus 로고
    • Transcriptional expression of GPR43 gene in adipose tissue and primary cultured adipocytes of pig
    • Hou Z, Sun C. Transcriptional expression of GPR43 gene in adipose tissue and primary cultured adipocytes of pig. Sheng Wu Gong Cheng Xue Bao 2008; 24(8): 1361-6.
    • (2008) Sheng Wu Gong Cheng Xue Bao , vol.24 , Issue.8 , pp. 1361-1366
    • Hou, Z.1    Sun, C.2
  • 26
    • 84872274966 scopus 로고    scopus 로고
    • Evaluation of the relationship between GPR43 and adiposity in human
    • Dewulf EM, Ge Q, Bindels LB, et al. Evaluation of the relationship between GPR43 and adiposity in human. Nutr Metab (Lond) 2013; 10(1): 11.
    • (2013) Nutr Metab (Lond) , vol.10 , Issue.1 , pp. 11
    • Dewulf, E.M.1    Ge, Q.2    Bindels, L.B.3
  • 27
    • 84906876780 scopus 로고    scopus 로고
    • Effect of short chain fatty acids on the expression of free fatty acid receptor 2 (FFAR2), FFAR3 and early-stage adipogenesis
    • Frost G, Cai Z, Raven M, Otway DT, Mushtaq R, Johnston JD. Effect of short chain fatty acids on the expression of free fatty acid receptor 2 (FFAR2), FFAR3 and early-stage adipogenesis. Nutr Diabetes 2014; 4: e128.
    • (2014) Nutr Diabetes , vol.4
    • Frost, G.1    Cai, Z.2    Raven, M.3    Otway, D.T.4    Mushtaq, R.5    Johnston, J.D.6
  • 28
    • 57349142454 scopus 로고    scopus 로고
    • Identification and functional characterization of allosteric agonists for the G proteincoupled receptor FFA2
    • Lee T, Schwandner R, Swaminath G, et al. Identification and functional characterization of allosteric agonists for the G proteincoupled receptor FFA2. Mol Pharmacol 2008; 74(6): 1599-609.
    • (2008) Mol Pharmacol , vol.74 , Issue.6 , pp. 1599-1609
    • Lee, T.1    Schwandner, R.2    Swaminath, G.3
  • 29
    • 72249086955 scopus 로고    scopus 로고
    • The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators
    • Wang Y, Jiao X, Kayser F, et al. The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg Med Chem Lett 2010; 20(2): 493-8.
    • (2010) Bioorg Med Chem Lett , vol.20 , Issue.2 , pp. 493-498
    • Wang, Y.1    Jiao, X.2    Kayser, F.3
  • 30
    • 12744279669 scopus 로고    scopus 로고
    • Diabetes: Insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage
    • Raz I, Eldor R, Cernea S, Shafrir E. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab Res Rev 2005; 21(1): 3-14.
    • (2005) Diabetes Metab Res Rev , vol.21 , Issue.1 , pp. 3-14
    • Raz, I.1    Eldor, R.2    Cernea, S.3    Shafrir, E.4
  • 31
    • 84904959809 scopus 로고    scopus 로고
    • Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals
    • Daniele G, Eldor R, Merovci A, et al. Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals. Diabetes 2014; 63(8): 2812-20.
    • (2014) Diabetes , vol.63 , Issue.8 , pp. 2812-2820
    • Daniele, G.1    Eldor, R.2    Merovci, A.3
  • 32
    • 84856509724 scopus 로고    scopus 로고
    • Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-proteincoupled receptor FFAR2
    • Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-proteincoupled receptor FFAR2. Diabetes 2012; 61(2): 364-71.
    • (2012) Diabetes , vol.61 , Issue.2 , pp. 364-371
    • Tolhurst, G.1    Heffron, H.2    Lam, Y.S.3
  • 33
    • 84878579044 scopus 로고    scopus 로고
    • The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43
    • Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013; 4: 1829.
    • (2013) Nat Commun , vol.4 , pp. 1829
    • Kimura, I.1    Ozawa, K.2    Inoue, D.3
  • 34
    • 78650800467 scopus 로고    scopus 로고
    • Improved glucose control and reduced body fat mass in free fatty acid receptor 2- deficient mice fed a high-fat diet
    • Bjursell M, Admyre T, Goransson M, et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2- deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2011; 300(1): E211-20.
    • (2011) Am J Physiol Endocrinol Metab , vol.300 , Issue.1 , pp. E211-E220
    • Bjursell, M.1    Admyre, T.2    Goransson, M.3
  • 35
    • 84922620529 scopus 로고    scopus 로고
    • Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes
    • Tang C, Ahmed K, Gille A, et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 2015; 21(2): 173-7.
    • (2015) Nat Med , vol.21 , Issue.2 , pp. 173-177
    • Tang, C.1    Ahmed, K.2    Gille, A.3
  • 36
    • 0036320410 scopus 로고    scopus 로고
    • Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity
    • Karpe F, Fielding BA, Ilic V, Macdonald IA, Summers LK, Frayn KN. Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 2002; 51(8): 2467- 73.
    • (2002) Diabetes , vol.51 , Issue.8 , pp. 2467-2473
    • Karpe, F.1    Fielding, B.A.2    Ilic, V.3    Macdonald, I.A.4    Summers, L.K.5    Frayn, K.N.6
  • 37
    • 0032765395 scopus 로고    scopus 로고
    • Glucose turnover and adipose tissue lipolysis are insulin-resistant in healthy relatives of type 2 diabetes patients: Is cellular insulin resistance a secondary phenomenon?
    • Eriksson JW, Smith U, Waagstein F, Wysocki M, Jansson PA. Glucose turnover and adipose tissue lipolysis are insulin-resistant in healthy relatives of type 2 diabetes patients: is cellular insulin resistance a secondary phenomenon? Diabetes 1999; 48(8): 1572-8.
    • (1999) Diabetes , vol.48 , Issue.8 , pp. 1572-1578
    • Eriksson, J.W.1    Smith, U.2    Waagstein, F.3    Wysocki, M.4    Jansson, P.A.5
  • 38
    • 0031434946 scopus 로고    scopus 로고
    • Increased abundance of insulin/IGF-I hybrid receptors in adipose tissue from NIDDM patients
    • Federici M, Porzio O, Zucaro L, et al. Increased abundance of insulin/IGF-I hybrid receptors in adipose tissue from NIDDM patients. Mol Cell Endocrinol 1997; 135(1): 41-7.
    • (1997) Mol Cell Endocrinol , vol.135 , Issue.1 , pp. 41-47
    • Federici, M.1    Porzio, O.2    Zucaro, L.3
  • 39
    • 0030821972 scopus 로고    scopus 로고
    • Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue
    • Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 1997; 46(10): 1140-5.
    • (1997) Metabolism , vol.46 , Issue.10 , pp. 1140-1145
    • Ahmad, F.1    Considine, R.V.2    Bauer, T.L.3    Ohannesian, J.P.4    Marco, C.C.5    Goldstein, B.J.6
  • 40
    • 0023546710 scopus 로고
    • Hyperinsulinemia does not compensate for peripheral insulin resistance in obesity
    • Prager R, Wallace P, Olefsky JM. Hyperinsulinemia does not compensate for peripheral insulin resistance in obesity. Diabetes 1987 36(3): 327-34.
    • (1987) Diabetes , vol.36 , Issue.3 , pp. 327-334
    • Prager, R.1    Wallace, P.2    Olefsky, J.M.3
  • 41
    • 0019365482 scopus 로고
    • Mechanisms of insulin resistance in obesity and noninsulin-dependent (type II) diabetes
    • Olefsky JM, Kolterman OG. Mechanisms of insulin resistance in obesity and noninsulin-dependent (type II) diabetes. Am J Med 1981 70(1): 151-68.
    • (1981) Am J Med , vol.70 , Issue.1 , pp. 151-168
    • Olefsky, J.M.1    Kolterman, O.G.2
  • 42
    • 0021069932 scopus 로고
    • Insulin resistance in fat cells from insulin-treated type I diabetic individuals
    • Lonnroth P, Blohme G, Lager I, Tisell LE, Smith U. Insulin resistance in fat cells from insulin-treated type I diabetic individuals. Diabetes Care 1983; 6(6): 586-90.
    • (1983) Diabetes Care , vol.6 , Issue.6 , pp. 586-590
    • Lonnroth, P.1    Blohme, G.2    Lager, I.3    Tisell, L.E.4    Smith, U.5
  • 43
    • 0021053778 scopus 로고
    • Reversal of insulin resistance in type I diabetes after treatment with continuous subcutaneous insulin infusion
    • Lager I, Lonnroth P, von Schenck H, Smith U. Reversal of insulin resistance in type I diabetes after treatment with continuous subcutaneous insulin infusion. Br Med J (Clin Res Ed) 1983; 287(6406): 1661-4.
    • (1983) Br Med J (Clin Res Ed) , vol.287 , Issue.6406 , pp. 1661-1664
    • Lager, I.1    Lonnroth, P.2    von Schenck, H.3    Smith, U.4
  • 44
    • 0019415752 scopus 로고
    • Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus
    • Kolterman OG, Gray RS, Griffin J, et al. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest 1981; 68(4): 957-69.
    • (1981) J Clin Invest , vol.68 , Issue.4 , pp. 957-969
    • Kolterman, O.G.1    Gray, R.S.2    Griffin, J.3
  • 45
    • 0027018257 scopus 로고
    • The insulin resistance syndrome
    • Ferrannini E. The insulin resistance syndrome. Curr Opin Nephrol Hypertens 1992; 1(2): 291-8.
    • (1992) Curr Opin Nephrol Hypertens , vol.1 , Issue.2 , pp. 291-298
    • Ferrannini, E.1
  • 46
    • 84861443900 scopus 로고    scopus 로고
    • Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes
    • Petersen KF, Dufour S, Morino K, Yoo PS, Cline GW, Shulman GI. Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes. Proc Natl Acad Sci USA 2012; 109(21): 8236-40.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.21 , pp. 8236-8240
    • Petersen, K.F.1    Dufour, S.2    Morino, K.3    Yoo, P.S.4    Cline, G.W.5    Shulman, G.I.6
  • 47
    • 78649960483 scopus 로고    scopus 로고
    • Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in dietinduced obese mice
    • He M, Su H, Gao W, et al. Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in dietinduced obese mice. PLoS One 2010; 5(12): e14205.
    • (2010) PLoS One , vol.5 , Issue.12
    • He, M.1    Su, H.2    Gao, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.