-
1
-
-
53549127020
-
Free fatty acid receptors and drug discovery
-
Hirasawa A, Hara T, Katsuma S, Adachi T, Tsujimoto G. Free fatty acid receptors and drug discovery. Biol Pharm Bull 2008; 31(10): 1847-51.
-
(2008)
Biol Pharm Bull
, vol.31
, Issue.10
, pp. 1847-1851
-
-
Hirasawa, A.1
Hara, T.2
Katsuma, S.3
Adachi, T.4
Tsujimoto, G.5
-
2
-
-
69549127966
-
Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis
-
Ichimura A, Hirasawa A, Hara T, Tsujimoto G. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Other Lipid Mediat 2009; 89(3-4): 82-8.
-
(2009)
Prostaglandins Other Lipid Mediat
, vol.89
, Issue.3-4
, pp. 82-88
-
-
Ichimura, A.1
Hirasawa, A.2
Hara, T.3
Tsujimoto, G.4
-
3
-
-
34248527694
-
Fatty acid receptors as new therapeutic targets for diabetes
-
Rayasam GV, Tulasi VK, Davis JA, Bansal VS. Fatty acid receptors as new therapeutic targets for diabetes. Expert Opin Ther Targets 2007; 11(5): 661-71.
-
(2007)
Expert Opin Ther Targets
, vol.11
, Issue.5
, pp. 661-671
-
-
Rayasam, G.V.1
Tulasi, V.K.2
Davis, J.A.3
Bansal, V.S.4
-
4
-
-
0038732634
-
Insulin secretion: Fatty acid signalling via serpentine receptors
-
Rutter GA. Insulin secretion: fatty acid signalling via serpentine receptors. Curr Biol 2003; 13(10): R403-5.
-
(2003)
Curr Biol
, vol.13
, Issue.10
, pp. R403-R405
-
-
Rutter, G.A.1
-
5
-
-
13444263540
-
Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120
-
Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005; 11(1): 90-4.
-
(2005)
Nat Med
, vol.11
, Issue.1
, pp. 90-94
-
-
Hirasawa, A.1
Tsumaya, K.2
Awaji, T.3
-
6
-
-
27944449329
-
Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion
-
Salehi A, Flodgren E, Nilsson NE, et al. Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res 2005 322(2): 207-15.
-
(2005)
Cell Tissue Res
, vol.322
, Issue.2
, pp. 207-215
-
-
Salehi, A.1
Flodgren, E.2
Nilsson, N.E.3
-
7
-
-
84873074797
-
Fatty acid binding receptors in intestinal physiology and pathophysiology
-
Kaemmerer E, Plum P, Klaus C, et al. Fatty acid binding receptors in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol 2010; 1(5): 147-53.
-
(2010)
World J Gastrointest Pathophysiol
, vol.1
, Issue.5
, pp. 147-153
-
-
Kaemmerer, E.1
Plum, P.2
Klaus, C.3
-
8
-
-
70349988797
-
G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell
-
Morgan NG, Dhayal S. G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell. Biochem Pharmacol 2009; 78(12): 1419-27.
-
(2009)
Biochem Pharmacol
, vol.78
, Issue.12
, pp. 1419-1427
-
-
Morgan, N.G.1
Dhayal, S.2
-
9
-
-
11844275233
-
A family of fatty acid binding receptors
-
Brown AJ, Jupe S, Briscoe CP. A family of fatty acid binding receptors. DNA Cell Biol 2005; 24(1): 54-61.
-
(2005)
DNA Cell Biol
, vol.24
, Issue.1
, pp. 54-61
-
-
Brown, A.J.1
Jupe, S.2
Briscoe, C.P.3
-
10
-
-
85047689124
-
Bacteria, colonic fermentation, and gastrointestinal health
-
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012; 95(1): 50-60.
-
(2012)
J AOAC Int
, vol.95
, Issue.1
, pp. 50-60
-
-
Macfarlane, G.T.1
Macfarlane, S.2
-
11
-
-
84859587827
-
Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms
-
Lin HV, Frassetto A, Kowalik EJ Jr, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012; 7(4): e35240.
-
(2012)
PLoS One
, vol.7
, Issue.4
-
-
Lin, H.V.1
Frassetto, A.2
Kowalik, E.J.3
-
13
-
-
4444236381
-
Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium
-
Sanderson IR. Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. J Nutr 2004; 134(9): 2450S- 2454S.
-
(2004)
J Nutr
, vol.134
, Issue.9
, pp. 2450S-2454S
-
-
Sanderson, I.R.1
-
14
-
-
0034468542
-
Short-chain fatty acid in the human colon. Relation to inflammatory bowel diseases and colon cancer
-
D'Argenio G, Mazzacca G. Short-chain fatty acid in the human colon. Relation to inflammatory bowel diseases and colon cancer. Adv Exp Med Biol 1999; 472: 149-58.
-
(1999)
Adv Exp Med Biol
, vol.472
, pp. 149-158
-
-
D'Argenio, G.1
Mazzacca, G.2
-
15
-
-
0038363378
-
The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids
-
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278(13): 11312-9.
-
(2003)
J Biol Chem
, vol.278
, Issue.13
, pp. 11312-11319
-
-
Brown, A.J.1
Goldsworthy, S.M.2
Barnes, A.A.3
-
16
-
-
0038491435
-
Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation
-
Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278(28): 25481-9.
-
(2003)
J Biol Chem
, vol.278
, Issue.28
, pp. 25481-25489
-
-
Le Poul, E.1
Loison, C.2
Struyf, S.3
-
17
-
-
0037453280
-
Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids
-
Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 2003; 303(4): 1047-52.
-
(2003)
Biochem Biophys Res Commun
, vol.303
, Issue.4
, pp. 1047-1052
-
-
Nilsson, N.E.1
Kotarsky, K.2
Owman, C.3
Olde, B.4
-
18
-
-
77950120729
-
GPR43: An emerging target for the potential treatment of type 2 diabetes, obesity and insulin resistance
-
Tiwari A. GPR43: an emerging target for the potential treatment of type 2 diabetes, obesity and insulin resistance. Curr Opin Investig Drugs 2010; 11(4): 385-93.
-
(2010)
Curr Opin Investig Drugs
, vol.11
, Issue.4
, pp. 385-393
-
-
Tiwari, A.1
-
20
-
-
84872102587
-
A novel therapeutic target, GPR43; where it stands in drug discovery
-
Kim S, Kim YM, Kwak YS. A novel therapeutic target, GPR43; where it stands in drug discovery. Arch Pharm Res 2012; 35(9): 1505-9.
-
(2012)
Arch Pharm Res
, vol.35
, Issue.9
, pp. 1505-1509
-
-
Kim, S.1
Kim, Y.M.2
Kwak, Y.S.3
-
21
-
-
84876018174
-
GPR43/FFA2: Physiopathological relevance and therapeutic prospects
-
Bindels LB, Dewulf EM, Delzenne NM. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 2013; 34(4): 226-32.
-
(2013)
Trends Pharmacol Sci
, vol.34
, Issue.4
, pp. 226-232
-
-
Bindels, L.B.1
Dewulf, E.M.2
Delzenne, N.M.3
-
22
-
-
84862130670
-
The adipocyte as an endocrine organ in the regulation of metabolic homeostasis
-
Harwood HJ Jr. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 2012; 63(1): 57-75.
-
(2012)
Neuropharmacology
, vol.63
, Issue.1
, pp. 57-75
-
-
Harwood, H.J.1
-
23
-
-
50449087891
-
Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids
-
Ge H, Li X, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 2008; 149(9): 4519-26.
-
(2008)
Endocrinology
, vol.149
, Issue.9
, pp. 4519-4526
-
-
Ge, H.1
Li, X.2
Weiszmann, J.3
-
24
-
-
27844440904
-
Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43
-
Hong YH, Nishimura Y, Hishikawa D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005; 146(12): 5092-9.
-
(2005)
Endocrinology
, vol.146
, Issue.12
, pp. 5092-5099
-
-
Hong, Y.H.1
Nishimura, Y.2
Hishikawa, D.3
-
25
-
-
70450044364
-
Transcriptional expression of GPR43 gene in adipose tissue and primary cultured adipocytes of pig
-
Hou Z, Sun C. Transcriptional expression of GPR43 gene in adipose tissue and primary cultured adipocytes of pig. Sheng Wu Gong Cheng Xue Bao 2008; 24(8): 1361-6.
-
(2008)
Sheng Wu Gong Cheng Xue Bao
, vol.24
, Issue.8
, pp. 1361-1366
-
-
Hou, Z.1
Sun, C.2
-
26
-
-
84872274966
-
Evaluation of the relationship between GPR43 and adiposity in human
-
Dewulf EM, Ge Q, Bindels LB, et al. Evaluation of the relationship between GPR43 and adiposity in human. Nutr Metab (Lond) 2013; 10(1): 11.
-
(2013)
Nutr Metab (Lond)
, vol.10
, Issue.1
, pp. 11
-
-
Dewulf, E.M.1
Ge, Q.2
Bindels, L.B.3
-
27
-
-
84906876780
-
Effect of short chain fatty acids on the expression of free fatty acid receptor 2 (FFAR2), FFAR3 and early-stage adipogenesis
-
Frost G, Cai Z, Raven M, Otway DT, Mushtaq R, Johnston JD. Effect of short chain fatty acids on the expression of free fatty acid receptor 2 (FFAR2), FFAR3 and early-stage adipogenesis. Nutr Diabetes 2014; 4: e128.
-
(2014)
Nutr Diabetes
, vol.4
-
-
Frost, G.1
Cai, Z.2
Raven, M.3
Otway, D.T.4
Mushtaq, R.5
Johnston, J.D.6
-
28
-
-
57349142454
-
Identification and functional characterization of allosteric agonists for the G proteincoupled receptor FFA2
-
Lee T, Schwandner R, Swaminath G, et al. Identification and functional characterization of allosteric agonists for the G proteincoupled receptor FFA2. Mol Pharmacol 2008; 74(6): 1599-609.
-
(2008)
Mol Pharmacol
, vol.74
, Issue.6
, pp. 1599-1609
-
-
Lee, T.1
Schwandner, R.2
Swaminath, G.3
-
29
-
-
72249086955
-
The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators
-
Wang Y, Jiao X, Kayser F, et al. The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg Med Chem Lett 2010; 20(2): 493-8.
-
(2010)
Bioorg Med Chem Lett
, vol.20
, Issue.2
, pp. 493-498
-
-
Wang, Y.1
Jiao, X.2
Kayser, F.3
-
30
-
-
12744279669
-
Diabetes: Insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage
-
Raz I, Eldor R, Cernea S, Shafrir E. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab Res Rev 2005; 21(1): 3-14.
-
(2005)
Diabetes Metab Res Rev
, vol.21
, Issue.1
, pp. 3-14
-
-
Raz, I.1
Eldor, R.2
Cernea, S.3
Shafrir, E.4
-
31
-
-
84904959809
-
Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals
-
Daniele G, Eldor R, Merovci A, et al. Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals. Diabetes 2014; 63(8): 2812-20.
-
(2014)
Diabetes
, vol.63
, Issue.8
, pp. 2812-2820
-
-
Daniele, G.1
Eldor, R.2
Merovci, A.3
-
32
-
-
84856509724
-
Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-proteincoupled receptor FFAR2
-
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-proteincoupled receptor FFAR2. Diabetes 2012; 61(2): 364-71.
-
(2012)
Diabetes
, vol.61
, Issue.2
, pp. 364-371
-
-
Tolhurst, G.1
Heffron, H.2
Lam, Y.S.3
-
33
-
-
84878579044
-
The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43
-
Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013; 4: 1829.
-
(2013)
Nat Commun
, vol.4
, pp. 1829
-
-
Kimura, I.1
Ozawa, K.2
Inoue, D.3
-
34
-
-
78650800467
-
Improved glucose control and reduced body fat mass in free fatty acid receptor 2- deficient mice fed a high-fat diet
-
Bjursell M, Admyre T, Goransson M, et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2- deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2011; 300(1): E211-20.
-
(2011)
Am J Physiol Endocrinol Metab
, vol.300
, Issue.1
, pp. E211-E220
-
-
Bjursell, M.1
Admyre, T.2
Goransson, M.3
-
35
-
-
84922620529
-
Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes
-
Tang C, Ahmed K, Gille A, et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 2015; 21(2): 173-7.
-
(2015)
Nat Med
, vol.21
, Issue.2
, pp. 173-177
-
-
Tang, C.1
Ahmed, K.2
Gille, A.3
-
36
-
-
0036320410
-
Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity
-
Karpe F, Fielding BA, Ilic V, Macdonald IA, Summers LK, Frayn KN. Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 2002; 51(8): 2467- 73.
-
(2002)
Diabetes
, vol.51
, Issue.8
, pp. 2467-2473
-
-
Karpe, F.1
Fielding, B.A.2
Ilic, V.3
Macdonald, I.A.4
Summers, L.K.5
Frayn, K.N.6
-
37
-
-
0032765395
-
Glucose turnover and adipose tissue lipolysis are insulin-resistant in healthy relatives of type 2 diabetes patients: Is cellular insulin resistance a secondary phenomenon?
-
Eriksson JW, Smith U, Waagstein F, Wysocki M, Jansson PA. Glucose turnover and adipose tissue lipolysis are insulin-resistant in healthy relatives of type 2 diabetes patients: is cellular insulin resistance a secondary phenomenon? Diabetes 1999; 48(8): 1572-8.
-
(1999)
Diabetes
, vol.48
, Issue.8
, pp. 1572-1578
-
-
Eriksson, J.W.1
Smith, U.2
Waagstein, F.3
Wysocki, M.4
Jansson, P.A.5
-
38
-
-
0031434946
-
Increased abundance of insulin/IGF-I hybrid receptors in adipose tissue from NIDDM patients
-
Federici M, Porzio O, Zucaro L, et al. Increased abundance of insulin/IGF-I hybrid receptors in adipose tissue from NIDDM patients. Mol Cell Endocrinol 1997; 135(1): 41-7.
-
(1997)
Mol Cell Endocrinol
, vol.135
, Issue.1
, pp. 41-47
-
-
Federici, M.1
Porzio, O.2
Zucaro, L.3
-
39
-
-
0030821972
-
Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue
-
Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 1997; 46(10): 1140-5.
-
(1997)
Metabolism
, vol.46
, Issue.10
, pp. 1140-1145
-
-
Ahmad, F.1
Considine, R.V.2
Bauer, T.L.3
Ohannesian, J.P.4
Marco, C.C.5
Goldstein, B.J.6
-
40
-
-
0023546710
-
Hyperinsulinemia does not compensate for peripheral insulin resistance in obesity
-
Prager R, Wallace P, Olefsky JM. Hyperinsulinemia does not compensate for peripheral insulin resistance in obesity. Diabetes 1987 36(3): 327-34.
-
(1987)
Diabetes
, vol.36
, Issue.3
, pp. 327-334
-
-
Prager, R.1
Wallace, P.2
Olefsky, J.M.3
-
41
-
-
0019365482
-
Mechanisms of insulin resistance in obesity and noninsulin-dependent (type II) diabetes
-
Olefsky JM, Kolterman OG. Mechanisms of insulin resistance in obesity and noninsulin-dependent (type II) diabetes. Am J Med 1981 70(1): 151-68.
-
(1981)
Am J Med
, vol.70
, Issue.1
, pp. 151-168
-
-
Olefsky, J.M.1
Kolterman, O.G.2
-
42
-
-
0021069932
-
Insulin resistance in fat cells from insulin-treated type I diabetic individuals
-
Lonnroth P, Blohme G, Lager I, Tisell LE, Smith U. Insulin resistance in fat cells from insulin-treated type I diabetic individuals. Diabetes Care 1983; 6(6): 586-90.
-
(1983)
Diabetes Care
, vol.6
, Issue.6
, pp. 586-590
-
-
Lonnroth, P.1
Blohme, G.2
Lager, I.3
Tisell, L.E.4
Smith, U.5
-
43
-
-
0021053778
-
Reversal of insulin resistance in type I diabetes after treatment with continuous subcutaneous insulin infusion
-
Lager I, Lonnroth P, von Schenck H, Smith U. Reversal of insulin resistance in type I diabetes after treatment with continuous subcutaneous insulin infusion. Br Med J (Clin Res Ed) 1983; 287(6406): 1661-4.
-
(1983)
Br Med J (Clin Res Ed)
, vol.287
, Issue.6406
, pp. 1661-1664
-
-
Lager, I.1
Lonnroth, P.2
von Schenck, H.3
Smith, U.4
-
44
-
-
0019415752
-
Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus
-
Kolterman OG, Gray RS, Griffin J, et al. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest 1981; 68(4): 957-69.
-
(1981)
J Clin Invest
, vol.68
, Issue.4
, pp. 957-969
-
-
Kolterman, O.G.1
Gray, R.S.2
Griffin, J.3
-
45
-
-
0027018257
-
The insulin resistance syndrome
-
Ferrannini E. The insulin resistance syndrome. Curr Opin Nephrol Hypertens 1992; 1(2): 291-8.
-
(1992)
Curr Opin Nephrol Hypertens
, vol.1
, Issue.2
, pp. 291-298
-
-
Ferrannini, E.1
-
46
-
-
84861443900
-
Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes
-
Petersen KF, Dufour S, Morino K, Yoo PS, Cline GW, Shulman GI. Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes. Proc Natl Acad Sci USA 2012; 109(21): 8236-40.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.21
, pp. 8236-8240
-
-
Petersen, K.F.1
Dufour, S.2
Morino, K.3
Yoo, P.S.4
Cline, G.W.5
Shulman, G.I.6
-
47
-
-
78649960483
-
Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in dietinduced obese mice
-
He M, Su H, Gao W, et al. Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in dietinduced obese mice. PLoS One 2010; 5(12): e14205.
-
(2010)
PLoS One
, vol.5
, Issue.12
-
-
He, M.1
Su, H.2
Gao, W.3
-
48
-
-
9444283195
-
Pharmaceutical reversal of insulin resistance
-
Lautt WW, Macedo MP, Sadri P, Legare DJ, Reid MA, Guarino MP. Pharmaceutical reversal of insulin resistance. Proc West Pharmacol Soc 2004; 47: 30-2.
-
(2004)
Proc West Pharmacol Soc
, vol.47
, pp. 30-32
-
-
Lautt, W.W.1
Macedo, M.P.2
Sadri, P.3
Legare, D.J.4
Reid, M.A.5
Guarino, M.P.6
|