-
1
-
-
33845881411
-
Mechanisms linking obesity to insulin resistance and type 2 diabetes
-
doi: 10.1038/nature05482
-
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature (2006) 444:840-6. doi: 10.1038/nature05482
-
(2006)
Nature
, vol.444
, pp. 840-846
-
-
Kahn, S.E.1
Hull, R.L.2
Utzschneider, K.M.3
-
2
-
-
77957352775
-
Gut microbiota in obesity and metabolic disorders
-
doi:10.1017/S0029665110001813
-
Sanz Y, Santacruz A, Gauffin P. Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc (2010) 69:434-41. doi:10.1017/S0029665110001813
-
(2010)
Proc Nutr Soc
, vol.69
, pp. 434-441
-
-
Sanz, Y.1
Santacruz, A.2
Gauffin, P.3
-
3
-
-
84856023000
-
Peptides and their potential role in the treatment of diabetes and obesity
-
doi:10.1900/RDS.2011.8.355
-
Greenwood HC, Bloom SR, Murphy KG. Peptides and their potential role in the treatment of diabetes and obesity. Rev Diabet Stud (2011) 8:355-68. doi:10.1900/RDS.2011.8.355
-
(2011)
Rev Diabet Stud
, vol.8
, pp. 355-368
-
-
Greenwood, H.C.1
Bloom, S.R.2
Murphy, K.G.3
-
4
-
-
79953161490
-
Effects of the gut microbiota on obesity and glucose homeostasis
-
doi:10.1016/j.tem.2011.01.002
-
Greiner T, Backhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab (2011) 22:117-23. doi:10.1016/j.tem.2011.01.002
-
(2011)
Trends Endocrinol Metab
, vol.22
, pp. 117-123
-
-
Greiner, T.1
Backhed, F.2
-
5
-
-
79959201412
-
Human nutrition, the gut microbiome and the immune system
-
doi:10.1038/nature10213
-
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature (2011) 474:327-36. doi:10.1038/nature10213
-
(2011)
Nature
, vol.474
, pp. 327-336
-
-
Kau, A.L.1
Ahern, P.P.2
Griffin, N.W.3
Goodman, A.L.4
Gordon, J.I.5
-
6
-
-
0034959553
-
Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides
-
Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev (2001) 81:1031-64.
-
(2001)
Physiol Rev
, vol.81
, pp. 1031-1064
-
-
Topping, D.L.1
Clifton, P.M.2
-
7
-
-
38349049462
-
Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis
-
doi:10.1038/nrmicro1817
-
Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol (2008) 6:121-31. doi:10.1038/nrmicro1817
-
(2008)
Nat Rev Microbiol
, vol.6
, pp. 121-131
-
-
Flint, H.J.1
Bayer, E.A.2
Rincon, M.T.3
Lamed, R.4
White, B.A.5
-
8
-
-
0024439382
-
Effect of rectal infusion of short chain fatty acids in human subjects
-
Wolever TM, Brighenti F, Royall D, Jenkins AL, Jenkins DJ. Effect of rectal infusion of short chain fatty acids in human subjects. Am J Gastroenterol (1989) 84:1027-33.
-
(1989)
Am J Gastroenterol
, vol.84
, pp. 1027-1033
-
-
Wolever, T.M.1
Brighenti, F.2
Royall, D.3
Jenkins, A.L.4
Jenkins, D.J.5
-
9
-
-
0038363378
-
The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids
-
doi:10.1074/jbc.M211609200
-
Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem (2003) 278:11312-9. doi:10.1074/jbc.M211609200
-
(2003)
J Biol Chem
, vol.278
, pp. 11312-11319
-
-
Brown, A.J.1
Goldsworthy, S.M.2
Barnes, A.A.3
Eilert, M.M.4
Tcheang, L.5
Daniels, D.6
-
10
-
-
0037453280
-
Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids
-
doi:10.1016/S0006-291X(03)00488-1
-
Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun (2003) 303:1047-52. doi:10.1016/S0006-291X(03)00488-1
-
(2003)
Biochem Biophys Res Commun
, vol.303
, pp. 1047-1052
-
-
Nilsson, N.E.1
Kotarsky, K.2
Owman, C.3
Olde, B.4
-
11
-
-
0038491435
-
Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation
-
doi:10.1074/jbc.M301403200
-
Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem (2003) 278:25481-9. doi:10.1074/jbc.M301403200
-
(2003)
J Biol Chem
, vol.278
, pp. 25481-25489
-
-
Le Poul, E.1
Loison, C.2
Struyf, S.3
Springael, J.Y.4
Lannoy, V.5
Decobecq, M.E.6
-
12
-
-
27844440904
-
Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43
-
doi:10.1210/en.2005-0545
-
Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology (2005) 146:5092-9. doi:10.1210/en.2005-0545
-
(2005)
Endocrinology
, vol.146
, pp. 5092-5099
-
-
Hong, Y.H.1
Nishimura, Y.2
Hishikawa, D.3
Tsuzuki, H.4
Miyahara, H.5
Gotoh, C.6
-
13
-
-
70350666634
-
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
-
doi:10.1038/nature08530
-
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature (2009) 461:1282-6. doi:10.1038/nature08530
-
(2009)
Nature
, vol.461
, pp. 1282-1286
-
-
Maslowski, K.M.1
Vieira, A.T.2
Ng, A.3
Kranich, J.4
Sierro, F.5
Yu, D.6
-
14
-
-
73349123182
-
G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation
-
doi:10.4049/jimmunol.0900063
-
Sina C, Gavrilova O, Forster M, Till A, Derer S, Hildebrand F, et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol (2009) 183:7514-22. doi:10.4049/jimmunol.0900063
-
(2009)
J Immunol
, vol.183
, pp. 7514-7522
-
-
Sina, C.1
Gavrilova, O.2
Forster, M.3
Till, A.4
Derer, S.5
Hildebrand, F.6
-
15
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
doi:10.1126/science.1241165
-
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (2013) 341:569-73. doi:10.1126/science.1241165
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
Michaud, M.4
Gallini, C.A.5
Bohlooly, Y.M.6
-
16
-
-
77957263331
-
Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation
-
doi:10.1017/S0954422410000089
-
Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev (2010) 23:135-45. doi:10.1017/S0954422410000089
-
(2010)
Nutr Res Rev
, vol.23
, pp. 135-145
-
-
Sleeth, M.L.1
Thompson, E.L.2
Ford, H.E.3
Zac-Varghese, S.E.4
Frost, G.5
-
17
-
-
50449087891
-
Activation of GPR43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids
-
doi:10.1210/en.2008-0059
-
Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, et al. Activation of GPR43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology (2008) 149:4519-26. doi:10.1210/en.2008-0059
-
(2008)
Endocrinology
, vol.149
, pp. 4519-4526
-
-
Ge, H.1
Li, X.2
Weiszmann, J.3
Wang, P.4
Baribault, H.5
Chen, J.L.6
-
18
-
-
78650800467
-
Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet.
-
doi:10.1152/ajpendo.00229.2010
-
Bjursell M, Admyre T, Goransson M, Marley AE, Smith DM, Oscarsson J, et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab (2011) 300:E211-20. doi:10.1152/ajpendo.00229.2010
-
(2011)
Am J Physiol Endocrinol Metab
, vol.300
-
-
Bjursell, M.1
Admyre, T.2
Goransson, M.3
Marley, A.E.4
Smith, D.M.5
Oscarsson, J.6
-
19
-
-
84878579044
-
The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43
-
doi:10.1038/ncomms2852
-
Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun (2013) 4:1829. doi:10.1038/ncomms2852
-
(2013)
Nat Commun
, vol.4
, pp. 1829
-
-
Kimura, I.1
Ozawa, K.2
Inoue, D.3
Imamura, T.4
Kimura, K.5
Maeda, T.6
-
20
-
-
33845874101
-
An obesity-associated gut microbiome with increased capacity for energy harvest
-
doi:10.1038/nature05414
-
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature (2006) 444:1027-31. doi:10.1038/nature05414
-
(2006)
Nature
, vol.444
, pp. 1027-1031
-
-
Turnbaugh, P.J.1
Ley, R.E.2
Mahowald, M.A.3
Magrini, V.4
Mardis, E.R.5
Gordon, J.I.6
-
21
-
-
58749112734
-
A core gut microbiome in obese and lean twins
-
doi:10.1038/nature07540
-
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature (2009) 457:480-4. doi:10.1038/nature07540
-
(2009)
Nature
, vol.457
, pp. 480-484
-
-
Turnbaugh, P.J.1
Hamady, M.2
Yatsunenko, T.3
Cantarel, B.L.4
Duncan, A.5
Ley, R.E.6
-
22
-
-
80054913827
-
Targeting gut microbiota in obesity: effects of prebiotics and probiotics
-
doi:10.1038/nrendo.2011.126
-
Delzenne NM, Neyrinck AM, Backhed F, Cani PD. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol (2011) 7:639-46. doi:10.1038/nrendo.2011.126
-
(2011)
Nat Rev Endocrinol
, vol.7
, pp. 639-646
-
-
Delzenne, N.M.1
Neyrinck, A.M.2
Backhed, F.3
Cani, P.D.4
-
23
-
-
33646376658
-
Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine
-
doi:10.1007/s00441-005-0140-x
-
Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res (2006) 324:353-60. doi:10.1007/s00441-005-0140-x
-
(2006)
Cell Tissue Res
, vol.324
, pp. 353-360
-
-
Karaki, S.1
Mitsui, R.2
Hayashi, H.3
Kato, I.4
Sugiya, H.5
Iwanaga, T.6
-
24
-
-
41049090425
-
Expression of the short-chain fatty acid receptor, GPR43, in the human colon
-
doi:10.1007/s10735-007-9145-y
-
Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol (2008) 39:135-42. doi:10.1007/s10735-007-9145-y
-
(2008)
J Mol Histol
, vol.39
, pp. 135-142
-
-
Karaki, S.1
Tazoe, H.2
Hayashi, H.3
Kashiwabara, H.4
Tooyama, K.5
Suzuki, Y.6
-
25
-
-
13344282056
-
A role for glucagon-like peptide-1 in the central regulation of feeding
-
doi:10.1038/379069a0
-
Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature (1996) 379:69-72. doi:10.1038/379069a0
-
(1996)
Nature
, vol.379
, pp. 69-72
-
-
Turton, M.D.1
O'Shea, D.2
Gunn, I.3
Beak, S.A.4
Edwards, C.M.5
Meeran, K.6
-
26
-
-
0037043704
-
Gut hormone PYY(3-36) physiologically inhibits food intake
-
doi:10.1038/nature00887
-
Batterham RL, Cowley MA, Small CJ, Herzoq H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature (2002) 418:650-4. doi:10.1038/nature00887
-
(2002)
Nature
, vol.418
, pp. 650-654
-
-
Batterham, R.L.1
Cowley, M.A.2
Small, C.J.3
Herzoq, H.4
Cohen, M.A.5
Dakin, C.L.6
-
27
-
-
28744450411
-
Peptide YY is secreted after oral glucose administration in a gender-specific manner
-
doi:10.1210/jc.2005-0409
-
Kim BJ, Carlson OD, Jang HJ, Elahi D, Berry C, Egan JM. Peptide YY is secreted after oral glucose administration in a gender-specific manner. J Clin Endocrinol Metab (2005) 90:6665-71. doi:10.1210/jc.2005-0409
-
(2005)
J Clin Endocrinol Metab
, vol.90
, pp. 6665-6671
-
-
Kim, B.J.1
Carlson, O.D.2
Jang, H.J.3
Elahi, D.4
Berry, C.5
Egan, J.M.6
-
28
-
-
84856509724
-
Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2
-
doi:10.2337/db11-1019
-
Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes (2012) 61:364-71. doi:10.2337/db11-1019
-
(2012)
Diabetes
, vol.61
, pp. 364-371
-
-
Tolhurst, G.1
Heffron, H.2
Lam, Y.S.3
Parker, H.E.4
Habib, A.M.5
Diakogiannaki, E.6
|