메뉴 건너뛰기




Volumn 72, Issue 1-3, 2008, Pages 177-185

A Bayesian approach to support vector machines for the binary classification

Author keywords

Bayesian method; Classification; Feature space; Gaussian mixture model; Kernel; Reversible jump Markov chain Monte Carlo (RJMCMC); Support vector machine (SVM)

Indexed keywords

BAYESIAN NETWORKS; GEARS; IMAGE RETRIEVAL; LEARNING SYSTEMS; MARKOV PROCESSES; MONTE CARLO METHODS; MULTILAYER NEURAL NETWORKS; UNCERTAIN SYSTEMS; VECTORS;

EID: 55949127886     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.06.010     Document Type: Article
Times cited : (9)

References (49)
  • 3
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • Brooks S.P., and Gelman A. General methods for monitoring convergence of iterative simulations. J. Comput. Graphical Stat. 7 (1997) 434-455
    • (1997) J. Comput. Graphical Stat. , vol.7 , pp. 434-455
    • Brooks, S.P.1    Gelman, A.2
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery 2 (1998) 121-167
    • (1998) Data Min. Knowl. Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 0000506629 scopus 로고
    • Bayesian model choice through Markov chain Monte Carlo
    • Carlin B., and Chib S. Bayesian model choice through Markov chain Monte Carlo. J. R. Statist. Soc. Ser. B 57 (1995) 473-484
    • (1995) J. R. Statist. Soc. Ser. B , vol.57 , pp. 473-484
    • Carlin, B.1    Chib, S.2
  • 8
    • 0036434775 scopus 로고    scopus 로고
    • Modelling spatially correlated data via mixture: a Bayesian approach
    • Fernández C., and Green P.J. Modelling spatially correlated data via mixture: a Bayesian approach. J. R. Statist. Soc. Ser. B 64 (2002) 805-826
    • (2002) J. R. Statist. Soc. Ser. B , vol.64 , pp. 805-826
    • Fernández, C.1    Green, P.J.2
  • 9
    • 33749863915 scopus 로고    scopus 로고
    • Feature selection for support vector machines using genetic algorithms
    • Fröhlich H., Chapelle O., and Schölkopf B. Feature selection for support vector machines using genetic algorithms. Int. J. Artif. Intell. Tools 13 (2004) 791-800
    • (2004) Int. J. Artif. Intell. Tools , vol.13 , pp. 791-800
    • Fröhlich, H.1    Chapelle, O.2    Schölkopf, B.3
  • 12
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • Bernardo J.M., Berger J.O., Dawid A.P., and M. S.A.F. (Eds), Clarendon Press, Oxford, UK
    • Geweke J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernardo J.M., Berger J.O., Dawid A.P., and M. S.A.F. (Eds). Bayesian Statistics vol. 4 (1992), Clarendon Press, Oxford, UK 169-194
    • (1992) Bayesian Statistics , vol.4 , pp. 169-194
    • Geweke, J.1
  • 13
    • 0346102889 scopus 로고    scopus 로고
    • Penalized discriminant methods for the classification of tumors from gene expression data
    • Ghosh D. Penalized discriminant methods for the classification of tumors from gene expression data. Biometrics 59 (2003) 992-1000
    • (2003) Biometrics , vol.59 , pp. 992-1000
    • Ghosh, D.1
  • 14
    • 85081449923 scopus 로고    scopus 로고
    • W.R. Gilks, S. Richardson, D.J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice Chapman & Hall, London, 1996.
    • W.R. Gilks, S. Richardson, D.J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice Chapman & Hall, London, 1996.
  • 15
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P.J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 (1995) 711-732
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 16
    • 0346641850 scopus 로고    scopus 로고
    • Trans-dimensional Markov chain Monte Carlo
    • Green P.J., Hjort N.L., and Richardson S. (Eds), Oxford University Press, Oxford
    • Green P.J. Trans-dimensional Markov chain Monte Carlo. In: Green P.J., Hjort N.L., and Richardson S. (Eds). Highly Structured Stochastic Systems, Oxford Statistical Science Series vol. 27 (2003), Oxford University Press, Oxford 179-198
    • (2003) Highly Structured Stochastic Systems, Oxford Statistical Science Series , vol.27 , pp. 179-198
    • Green, P.J.1
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., and Vapnik V.N. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002) 389-422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.N.4
  • 18
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97-109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 19
    • 0020850136 scopus 로고
    • Simulation run length control in the presence of an initial transient
    • Heidelberger P., and Welch P.D. Simulation run length control in the presence of an initial transient. Oper. Res. 31 (1983) 1109-1144
    • (1983) Oper. Res. , vol.31 , pp. 1109-1144
    • Heidelberger, P.1    Welch, P.D.2
  • 21
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkoft B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
    • Joachims T. Making large-scale SVM learning practical. In: Schölkoft B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1999), MIT Press, Cambridge, MA 169-184
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 23
    • 85081442968 scopus 로고    scopus 로고
    • C.J. Lin, Formulations of support vector machines: a note from an optimization point of view, Technical Report, Department of Computer Science, National Taiwan University, 1999.
    • C.J. Lin, Formulations of support vector machines: a note from an optimization point of view, Technical Report, Department of Computer Science, National Taiwan University, 1999.
  • 27
    • 0003077442 scopus 로고    scopus 로고
    • Bayesian analysis of factorial experiments by mixture modelling
    • Nobile A., and Green P.J. Bayesian analysis of factorial experiments by mixture modelling. Biometrika 87 (2000) 15-35
    • (2000) Biometrika , vol.87 , pp. 15-35
    • Nobile, A.1    Green, P.J.2
  • 28
    • 0038620211 scopus 로고    scopus 로고
    • Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach
    • Perez-Enciso M., and Tenenhaus M. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum. Genet. 112 (2003) 581-592
    • (2003) Hum. Genet. , vol.112 , pp. 581-592
    • Perez-Enciso, M.1    Tenenhaus, M.2
  • 29
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin E.F., Ardekani A.M., et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359 (2002) 572-577
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin, E.F.1    Ardekani, A.M.2
  • 30
    • 26444489630 scopus 로고    scopus 로고
    • Proteomic cancer classification with mass spectrometry data
    • Rajapakse J.C., Duan K.B., and Yeo W.K. Proteomic cancer classification with mass spectrometry data. Am. J. Pharmacogenomics 5 (2005) 281-292
    • (2005) Am. J. Pharmacogenomics , vol.5 , pp. 281-292
    • Rajapakse, J.C.1    Duan, K.B.2    Yeo, W.K.3
  • 31
    • 18244378520 scopus 로고    scopus 로고
    • Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • Richardson S., and Green P.J. Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Statist. Soc. Ser. B 59 (1997) 731-792
    • (1997) J. R. Statist. Soc. Ser. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 32
    • 0000135848 scopus 로고
    • Modelling spatial patterns (with discussion)
    • Ripley B. Modelling spatial patterns (with discussion). J. R. Statist. Soc. Ser. B 39 (1977) 172-212
    • (1977) J. R. Statist. Soc. Ser. B , vol.39 , pp. 172-212
    • Ripley, B.1
  • 33
    • 0000599677 scopus 로고    scopus 로고
    • Mixtures of distributions: inference and estimation
    • Gilks W.R., Richardson S., and Spiegelhalter D.J. (Eds), Chapman & Hall, London
    • Robert C.P. Mixtures of distributions: inference and estimation. In: Gilks W.R., Richardson S., and Spiegelhalter D.J. (Eds). Markov Chain Monte Carlo in Practice (1996), Chapman & Hall, London 441-464
    • (1996) Markov Chain Monte Carlo in Practice , pp. 441-464
    • Robert, C.P.1
  • 40
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: evidence and predictive class probabilities
    • Sollich P. Bayesian methods for support vector machines: evidence and predictive class probabilities. Mach. Learn. 46 (2002) 21-52
    • (2002) Mach. Learn. , vol.46 , pp. 21-52
    • Sollich, P.1
  • 41
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components: an alternative to reversible jump methods
    • Stephens M. Bayesian analysis of mixture models with an unknown number of components: an alternative to reversible jump methods. Ann. Statist. 28 (2000) 40-74
    • (2000) Ann. Statist. , vol.28 , pp. 40-74
    • Stephens, M.1
  • 42
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., and Vandewale J. Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999) 293-300
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewale, J.2
  • 46
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B., Abbott T., et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19 (2003) 1636-1643
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2
  • 47
    • 25444446813 scopus 로고    scopus 로고
    • Evaluation of normalization methods for cdna microarray data by k-NN classification
    • Wu W., Xing E.P., Myers C., Mian I.S., and Bissell M.J. Evaluation of normalization methods for cdna microarray data by k-NN classification. BMC Bioinformatics 6 (2005) 191
    • (2005) BMC Bioinformatics , vol.6 , pp. 191
    • Wu, W.1    Xing, E.P.2    Myers, C.3    Mian, I.S.4    Bissell, M.J.5
  • 48
    • 29144508692 scopus 로고    scopus 로고
    • Bayesian neural network approaches to ovarian cancer identification from high-resolution mass spectrometry data
    • Yu J.S., and Chen X.W. Bayesian neural network approaches to ovarian cancer identification from high-resolution mass spectrometry data. Bioinformatics 21 (2005) i487-i494
    • (2005) Bioinformatics , vol.21
    • Yu, J.S.1    Chen, X.W.2
  • 49
    • 19544394460 scopus 로고    scopus 로고
    • Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data
    • Yu J.S., Ongarello S., Fiedler R., Chen X.W., Toffolo G., Cobelli C., and Trajanoski Z. Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 21 (2005) 2200-2209
    • (2005) Bioinformatics , vol.21 , pp. 2200-2209
    • Yu, J.S.1    Ongarello, S.2    Fiedler, R.3    Chen, X.W.4    Toffolo, G.5    Cobelli, C.6    Trajanoski, Z.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.