-
3
-
-
0032273615
-
General methods for monitoring convergence of iterative simulations
-
Brooks S.P., and Gelman A. General methods for monitoring convergence of iterative simulations. J. Comput. Graphical Stat. 7 (1997) 434-455
-
(1997)
J. Comput. Graphical Stat.
, vol.7
, pp. 434-455
-
-
Brooks, S.P.1
Gelman, A.2
-
4
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery 2 (1998) 121-167
-
(1998)
Data Min. Knowl. Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
5
-
-
0000506629
-
Bayesian model choice through Markov chain Monte Carlo
-
Carlin B., and Chib S. Bayesian model choice through Markov chain Monte Carlo. J. R. Statist. Soc. Ser. B 57 (1995) 473-484
-
(1995)
J. R. Statist. Soc. Ser. B
, vol.57
, pp. 473-484
-
-
Carlin, B.1
Chib, S.2
-
8
-
-
0036434775
-
Modelling spatially correlated data via mixture: a Bayesian approach
-
Fernández C., and Green P.J. Modelling spatially correlated data via mixture: a Bayesian approach. J. R. Statist. Soc. Ser. B 64 (2002) 805-826
-
(2002)
J. R. Statist. Soc. Ser. B
, vol.64
, pp. 805-826
-
-
Fernández, C.1
Green, P.J.2
-
9
-
-
33749863915
-
Feature selection for support vector machines using genetic algorithms
-
Fröhlich H., Chapelle O., and Schölkopf B. Feature selection for support vector machines using genetic algorithms. Int. J. Artif. Intell. Tools 13 (2004) 791-800
-
(2004)
Int. J. Artif. Intell. Tools
, vol.13
, pp. 791-800
-
-
Fröhlich, H.1
Chapelle, O.2
Schölkopf, B.3
-
11
-
-
0004012196
-
-
Chapman & Hall/CRC, London
-
Gelman A., Carlin J.B., Stern H.S., and Rubin D.B. Bayesian Data Analysis. second ed. (2004), Chapman & Hall/CRC, London
-
(2004)
Bayesian Data Analysis. second ed.
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
12
-
-
0001032163
-
Evaluating the accuracy of sampling-based approaches to calculating posterior moments
-
Bernardo J.M., Berger J.O., Dawid A.P., and M. S.A.F. (Eds), Clarendon Press, Oxford, UK
-
Geweke J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernardo J.M., Berger J.O., Dawid A.P., and M. S.A.F. (Eds). Bayesian Statistics vol. 4 (1992), Clarendon Press, Oxford, UK 169-194
-
(1992)
Bayesian Statistics
, vol.4
, pp. 169-194
-
-
Geweke, J.1
-
13
-
-
0346102889
-
Penalized discriminant methods for the classification of tumors from gene expression data
-
Ghosh D. Penalized discriminant methods for the classification of tumors from gene expression data. Biometrics 59 (2003) 992-1000
-
(2003)
Biometrics
, vol.59
, pp. 992-1000
-
-
Ghosh, D.1
-
14
-
-
85081449923
-
-
W.R. Gilks, S. Richardson, D.J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice Chapman & Hall, London, 1996.
-
W.R. Gilks, S. Richardson, D.J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice Chapman & Hall, London, 1996.
-
-
-
-
15
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
Green P.J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 (1995) 711-732
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
16
-
-
0346641850
-
Trans-dimensional Markov chain Monte Carlo
-
Green P.J., Hjort N.L., and Richardson S. (Eds), Oxford University Press, Oxford
-
Green P.J. Trans-dimensional Markov chain Monte Carlo. In: Green P.J., Hjort N.L., and Richardson S. (Eds). Highly Structured Stochastic Systems, Oxford Statistical Science Series vol. 27 (2003), Oxford University Press, Oxford 179-198
-
(2003)
Highly Structured Stochastic Systems, Oxford Statistical Science Series
, vol.27
, pp. 179-198
-
-
Green, P.J.1
-
17
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., and Vapnik V.N. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002) 389-422
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.N.4
-
18
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97-109
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
19
-
-
0020850136
-
Simulation run length control in the presence of an initial transient
-
Heidelberger P., and Welch P.D. Simulation run length control in the presence of an initial transient. Oper. Res. 31 (1983) 1109-1144
-
(1983)
Oper. Res.
, vol.31
, pp. 1109-1144
-
-
Heidelberger, P.1
Welch, P.D.2
-
21
-
-
0002714543
-
Making large-scale SVM learning practical
-
Schölkoft B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
-
Joachims T. Making large-scale SVM learning practical. In: Schölkoft B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1999), MIT Press, Cambridge, MA 169-184
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
22
-
-
4444234496
-
Data mining techniques for cancer detection using serum proteomic profiling
-
Li L., Tang H., Wu Z., Gong J., Gruidl M., Zou J., Tockman M., and Clark R.A. Data mining techniques for cancer detection using serum proteomic profiling. Artif. Intell. Med. 32 (2004) 71-83
-
(2004)
Artif. Intell. Med.
, vol.32
, pp. 71-83
-
-
Li, L.1
Tang, H.2
Wu, Z.3
Gong, J.4
Gruidl, M.5
Zou, J.6
Tockman, M.7
Clark, R.A.8
-
23
-
-
85081442968
-
-
C.J. Lin, Formulations of support vector machines: a note from an optimization point of view, Technical Report, Department of Computer Science, National Taiwan University, 1999.
-
C.J. Lin, Formulations of support vector machines: a note from an optimization point of view, Technical Report, Department of Computer Science, National Taiwan University, 1999.
-
-
-
-
25
-
-
33750274518
-
Bayesian modelling and inference on mixtures of distributions
-
Dey D.K., and Rao C.R. (Eds), Elsevier, Amsterdam
-
Marin J.M., Mengersen K., and Robert C.P. Bayesian modelling and inference on mixtures of distributions. In: Dey D.K., and Rao C.R. (Eds). Bayesian Thinking: Modeling and Computation, Handbook of Statistics vol. 25 (2005), Elsevier, Amsterdam 459-507
-
(2005)
Bayesian Thinking: Modeling and Computation, Handbook of Statistics
, vol.25
, pp. 459-507
-
-
Marin, J.M.1
Mengersen, K.2
Robert, C.P.3
-
27
-
-
0003077442
-
Bayesian analysis of factorial experiments by mixture modelling
-
Nobile A., and Green P.J. Bayesian analysis of factorial experiments by mixture modelling. Biometrika 87 (2000) 15-35
-
(2000)
Biometrika
, vol.87
, pp. 15-35
-
-
Nobile, A.1
Green, P.J.2
-
28
-
-
0038620211
-
Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach
-
Perez-Enciso M., and Tenenhaus M. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum. Genet. 112 (2003) 581-592
-
(2003)
Hum. Genet.
, vol.112
, pp. 581-592
-
-
Perez-Enciso, M.1
Tenenhaus, M.2
-
29
-
-
0037116832
-
Use of proteomic patterns in serum to identify ovarian cancer
-
Petricoin E.F., Ardekani A.M., et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359 (2002) 572-577
-
(2002)
Lancet
, vol.359
, pp. 572-577
-
-
Petricoin, E.F.1
Ardekani, A.M.2
-
30
-
-
26444489630
-
Proteomic cancer classification with mass spectrometry data
-
Rajapakse J.C., Duan K.B., and Yeo W.K. Proteomic cancer classification with mass spectrometry data. Am. J. Pharmacogenomics 5 (2005) 281-292
-
(2005)
Am. J. Pharmacogenomics
, vol.5
, pp. 281-292
-
-
Rajapakse, J.C.1
Duan, K.B.2
Yeo, W.K.3
-
31
-
-
18244378520
-
Bayesian analysis of mixtures with an unknown number of components (with discussion)
-
Richardson S., and Green P.J. Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Statist. Soc. Ser. B 59 (1997) 731-792
-
(1997)
J. R. Statist. Soc. Ser. B
, vol.59
, pp. 731-792
-
-
Richardson, S.1
Green, P.J.2
-
32
-
-
0000135848
-
Modelling spatial patterns (with discussion)
-
Ripley B. Modelling spatial patterns (with discussion). J. R. Statist. Soc. Ser. B 39 (1977) 172-212
-
(1977)
J. R. Statist. Soc. Ser. B
, vol.39
, pp. 172-212
-
-
Ripley, B.1
-
33
-
-
0000599677
-
Mixtures of distributions: inference and estimation
-
Gilks W.R., Richardson S., and Spiegelhalter D.J. (Eds), Chapman & Hall, London
-
Robert C.P. Mixtures of distributions: inference and estimation. In: Gilks W.R., Richardson S., and Spiegelhalter D.J. (Eds). Markov Chain Monte Carlo in Practice (1996), Chapman & Hall, London 441-464
-
(1996)
Markov Chain Monte Carlo in Practice
, pp. 441-464
-
-
Robert, C.P.1
-
39
-
-
50049109839
-
Bayesian kernel methods
-
Mendelson S., and Smola A.J. (Eds), Springer, Berlin
-
Smola A.J., and Schölkopf B. Bayesian kernel methods. In: Mendelson S., and Smola A.J. (Eds). Advanced Lectures on Machine Learning: Machine Learning Summer School 2002 (2002), Springer, Berlin 65-117
-
(2002)
Advanced Lectures on Machine Learning: Machine Learning Summer School 2002
, pp. 65-117
-
-
Smola, A.J.1
Schölkopf, B.2
-
40
-
-
0036163572
-
Bayesian methods for support vector machines: evidence and predictive class probabilities
-
Sollich P. Bayesian methods for support vector machines: evidence and predictive class probabilities. Mach. Learn. 46 (2002) 21-52
-
(2002)
Mach. Learn.
, vol.46
, pp. 21-52
-
-
Sollich, P.1
-
41
-
-
0034374610
-
Bayesian analysis of mixture models with an unknown number of components: an alternative to reversible jump methods
-
Stephens M. Bayesian analysis of mixture models with an unknown number of components: an alternative to reversible jump methods. Ann. Statist. 28 (2000) 40-74
-
(2000)
Ann. Statist.
, vol.28
, pp. 40-74
-
-
Stephens, M.1
-
42
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., and Vandewale J. Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999) 293-300
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewale, J.2
-
46
-
-
0141738784
-
Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
-
Wu B., Abbott T., et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19 (2003) 1636-1643
-
(2003)
Bioinformatics
, vol.19
, pp. 1636-1643
-
-
Wu, B.1
Abbott, T.2
-
47
-
-
25444446813
-
Evaluation of normalization methods for cdna microarray data by k-NN classification
-
Wu W., Xing E.P., Myers C., Mian I.S., and Bissell M.J. Evaluation of normalization methods for cdna microarray data by k-NN classification. BMC Bioinformatics 6 (2005) 191
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 191
-
-
Wu, W.1
Xing, E.P.2
Myers, C.3
Mian, I.S.4
Bissell, M.J.5
-
48
-
-
29144508692
-
Bayesian neural network approaches to ovarian cancer identification from high-resolution mass spectrometry data
-
Yu J.S., and Chen X.W. Bayesian neural network approaches to ovarian cancer identification from high-resolution mass spectrometry data. Bioinformatics 21 (2005) i487-i494
-
(2005)
Bioinformatics
, vol.21
-
-
Yu, J.S.1
Chen, X.W.2
-
49
-
-
19544394460
-
Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data
-
Yu J.S., Ongarello S., Fiedler R., Chen X.W., Toffolo G., Cobelli C., and Trajanoski Z. Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 21 (2005) 2200-2209
-
(2005)
Bioinformatics
, vol.21
, pp. 2200-2209
-
-
Yu, J.S.1
Ongarello, S.2
Fiedler, R.3
Chen, X.W.4
Toffolo, G.5
Cobelli, C.6
Trajanoski, Z.7
|