메뉴 건너뛰기




Volumn 73, Issue 1-3, 2009, Pages 397-411

Margin calibration in SVM class-imbalanced learning

Author keywords

Class imbalanced learning; Classification; Cost sensitive learning; Margin; Support vector machines

Indexed keywords

CLASS-IMBALANCED LEARNING; CLASSIFICATION; COST-SENSITIVE; COST-SENSITIVE LEARNING; DECISION BOUNDARY; EXPERIMENTAL VALIDATIONS; FUTURE APPLICATIONS; IMBALANCED CLASS; IMBALANCED DATASET; LOSS FUNCTIONS; MACHINE-LEARNING; MARGIN; OPTIMAL PERFORMANCE; PRACTICAL ISSUES; RECEIVER OPERATING CHARACTERISTIC CURVES; REFERENCE MODELS;

EID: 70350728414     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.08.006     Document Type: Article
Times cited : (64)

References (45)
  • 1
    • 70350744438 scopus 로고    scopus 로고
    • Machine learning from imbalanced data sets
    • Japkowicz N., and Holte R. (Eds), AAAI Press, Austin, TX
    • Provost F. Machine learning from imbalanced data sets. In: Japkowicz N., and Holte R. (Eds). Invited Paper for the AAAI'2000 Workshop on Imbalanced Data Sets (2000), AAAI Press, Austin, TX
    • (2000) Invited Paper for the AAAI'2000 Workshop on Imbalanced Data Sets
    • Provost, F.1
  • 2
    • 70350739563 scopus 로고    scopus 로고
    • Chawla N.V., Japkowicz N., and Kotcz A. (Eds)
    • In: Chawla N.V., Japkowicz N., and Kotcz A. (Eds). Editorial: special issue on learning from imbalanced data sets. SIKDD Explorations Newsletters 6 1 (2004) 1-6
    • (2004) SIKDD Explorations Newsletters , vol.6 , Issue.1 , pp. 1-6
  • 7
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • Ting K.M. An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering 14 3 (2002) 659-665
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 13
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 22
    • 0036469481 scopus 로고    scopus 로고
    • Conformal transformation of kernel functions: a data-dependent way to improve support vector machine classifiers
    • Wu S., and Amari S. Conformal transformation of kernel functions: a data-dependent way to improve support vector machine classifiers. Neural Processing Letters 15 (2002) 59-67
    • (2002) Neural Processing Letters , vol.15 , pp. 59-67
    • Wu, S.1    Amari, S.2
  • 23
    • 20844441675 scopus 로고    scopus 로고
    • KBA: kernel boundary alignment considering imbalanced data distribution
    • Wu G., and Chang E.Y. KBA: kernel boundary alignment considering imbalanced data distribution. IEEE Transactions on Knowledge and Data Engineering 17 6 (2005) 786-795
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 25
    • 24344490308 scopus 로고    scopus 로고
    • Support vector machines for candidate nodules classification
    • Campadelli P., Casiraghi E., and Valentini G. Support vector machines for candidate nodules classification. Neurocomputing 68 (2005) 281-289
    • (2005) Neurocomputing , vol.68 , pp. 281-289
    • Campadelli, P.1    Casiraghi, E.2    Valentini, G.3
  • 28
    • 33144459635 scopus 로고    scopus 로고
    • Response modeling with support vector machines
    • Shin H., and Cho S.B. Response modeling with support vector machines. Expert Systems with Applications 30 4 (2006) 746-760
    • (2006) Expert Systems with Applications , vol.30 , Issue.4 , pp. 746-760
    • Shin, H.1    Cho, S.B.2
  • 30
  • 31
    • 56149115460 scopus 로고    scopus 로고
    • Highlighting heterogeneous samples to support vector machines' training
    • Yang C.-Y. Highlighting heterogeneous samples to support vector machines' training. Neurocomputing 72 (2008) 218-230
    • (2008) Neurocomputing , vol.72 , pp. 218-230
    • Yang, C.-Y.1
  • 32
    • 2342495357 scopus 로고    scopus 로고
    • A note on margin-based loss functions in classification
    • Lin Y. A note on margin-based loss functions in classification. Statistics and Probability Letters 68 1 (2004) 73-82
    • (2004) Statistics and Probability Letters , vol.68 , Issue.1 , pp. 73-82
    • Lin, Y.1
  • 33
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of Statistics 32 (2004) 56-85
    • (2004) The Annals of Statistics , vol.32 , pp. 56-85
    • Zhang, T.1
  • 34
    • 1542367492 scopus 로고    scopus 로고
    • Convexity, classification, and risk bounds
    • Technical Report 638, Department of Statistics, UC Berkeley, CA
    • P.L. Bartlett, M.I. Jordan, J.D. McAuliffe, Convexity, classification, and risk bounds, Technical Report 638, Department of Statistics, UC Berkeley, CA, 2003.
    • (2003)
    • Bartlett, P.L.1    Jordan, M.I.2    McAuliffe, J.D.3
  • 35
    • 12444265838 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel classifiers
    • Steinwart I. Consistency of support vector machines and other regularized kernel classifiers. IEEE Transactions on Information Theory 51 1 (2005) 128-142
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.1 , pp. 128-142
    • Steinwart, I.1
  • 36
    • 34547483052 scopus 로고    scopus 로고
    • How to compare different loss functions and their risks
    • Steinwart I. How to compare different loss functions and their risks. Constructive Approximation 26 2 (2007) 225-287
    • (2007) Constructive Approximation , vol.26 , Issue.2 , pp. 225-287
    • Steinwart, I.1
  • 39
    • 70350711212 scopus 로고    scopus 로고
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository. University of California, Irvine, CA, School of Information and Computer Science, 2007 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository. University of California, Irvine, CA, School of Information and Computer Science, 2007 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
  • 40
    • 13444306445 scopus 로고    scopus 로고
    • Modeling the rotifer classifier with non-parametric hybrid KNN rules-a comparative evaluation approach
    • Yang C.-Y., and Chou J.-J. Modeling the rotifer classifier with non-parametric hybrid KNN rules-a comparative evaluation approach. Image and Vision Computing 23 4 (2005) 427-439
    • (2005) Image and Vision Computing , vol.23 , Issue.4 , pp. 427-439
    • Yang, C.-Y.1    Chou, J.-J.2
  • 41
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982) 29-36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 42
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 27 8 (2006) 861-874
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 43
    • 28244467848 scopus 로고    scopus 로고
    • Posterior probability support vector machines for unbalanced data
    • Tao Q., Wu G.-W., Wang F.-Y., and Wang J. Posterior probability support vector machines for unbalanced data. IEEE Transactions on Neural Networks 16 6 (2005) 1561-1573
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1561-1573
    • Tao, Q.1    Wu, G.-W.2    Wang, F.-Y.3    Wang, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.