메뉴 건너뛰기




Volumn 19, Issue , 2014, Pages 8756-8761

Support Vector Machines for class imbalance rail data classification with bootstrapping-based over-sampling and under-sampling

Author keywords

Imbalanced data; Oversampling; Support Vector Machines (SVMs); Under sampling

Indexed keywords

AUTOMATION; COMPUTATIONAL COMPLEXITY; ITERATIVE METHODS; PROBLEM SOLVING; VECTORS;

EID: 84929773806     PISSN: 14746670     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3182/20140824-6-za-1003.00794     Document Type: Conference Paper
Times cited : (10)

References (11)
  • 2
    • 77953089698 scopus 로고    scopus 로고
    • FSVM-CIL: Fuzzy support vector machines for class imbalance learning
    • Batuwita, R. & Palade, V., 2010. FSVM-CIL: Fuzzy Support Vector Machines for Class Imbalance Learning. IEEE Transactions on Fuzzy Systems, 18(3), pp.558-571.
    • (2010) IEEE Transactions on Fuzzy Systems , vol.18 , Issue.3 , pp. 558-571
    • Batuwita, R.1    Palade, V.2
  • 3
    • 0346586663 scopus 로고    scopus 로고
    • SMOTE: Synthetic minority over-sampling TEchnique
    • Chawla, N. V. et al., 2002. SMOTE: Synthetic Minority Over-sampling TEchnique. Artificial Intelligence Research, 16, pp.341-378.
    • (2002) Artificial Intelligence Research , vol.16 , pp. 341-378
    • Chawla, N.V.1
  • 4
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Estabrooks, A., Jo, T. & Japkowicz, N., 2004. A Multiple Resampling Method for Learning from Imbalanced Data Sets. Computational Intelligence, 20(1), pp.18-36.
    • (2004) Computational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 8
    • 84893304699 scopus 로고    scopus 로고
    • On the study of GRBF and polynomial kernel based support vector machine in web logs
    • 1st International Conference on. IEEE
    • Sahoo, P. et al., 2013. On the study of GRBF and polynomial kernel based support vector machine in web logs. Emerging Trends and Applications in Computer Science (ICETACS),1st International Conference on.IEEE, pp.1-5.
    • (2013) Emerging Trends and Applications in Computer Science (ICETACS) , pp. 1-5
    • Sahoo, P.1
  • 10
    • 80053062615 scopus 로고    scopus 로고
    • Adaptive neural-fuzzy inference system for classification of rail quality data with bootstrapping-based over-sampling
    • Yang, Y.Y. et al., 2011. Adaptive neural-fuzzy inference system for classification of rail quality data with bootstrapping-based over-sampling. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp.2205-2212.
    • (2011) IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011) , pp. 2205-2212
    • Yang, Y.Y.1
  • 11
    • 84875072988 scopus 로고    scopus 로고
    • An online incremental learning support vector machine for large-scale data
    • Zheng, J. et al., 2013. An online incremental learning support vector machine for large-scale data. Neural Computing and Applications, 22(5), pp.1023-1035.
    • (2013) Neural Computing and Applications , vol.22 , Issue.5 , pp. 1023-1035
    • Zheng, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.