메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process

Author keywords

[No Author keywords available]

Indexed keywords

KINESIN; MOLECULAR MOTOR; BIR1 PROTEIN, S CEREVISIAE; CARRIER PROTEIN; CIK1 PROTEIN, S CEREVISIAE; KAR3 PROTEIN, S CEREVISIAE; MICROTUBULE ASSOCIATED PROTEIN; MICROTUBULE PROTEIN; NUCLEOPORIN; NUP84 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84937839493     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms8742     Document Type: Article
Times cited : (73)

References (70)
  • 1
    • 0021234973 scopus 로고
    • DNA sequences of telomeres maintained in yeast
    • Shampay, J., Szostak, J. W. & Blackburn, E. H. DNA sequences of telomeres maintained in yeast. Nature 310, 154-157 (1984).
    • (1984) Nature , vol.310 , pp. 154-157
    • Shampay, J.1    Szostak, J.W.2    Blackburn, E.H.3
  • 2
    • 0022402513 scopus 로고
    • Identification of a specific telomere terminal transferase activity in tetrahymena extracts
    • Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 43, 405-413 (1985).
    • (1985) Cell , vol.43 , pp. 405-413
    • Greider, C.W.1    Blackburn, E.H.2
  • 3
    • 0025201982 scopus 로고
    • Position effect at s. Cerevisiae telomeres: Reversible repression of pol II transcription
    • Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at s. cerevisiae telomeres: reversible repression of pol ii transcription. Cell 63, 751-762 (1990).
    • (1990) Cell , vol.63 , pp. 751-762
    • Gottschling, D.E.1    Aparicio, O.M.2    Billington, B.L.3    Zakian, V.A.4
  • 4
    • 77951616674 scopus 로고    scopus 로고
    • The nuclear envelope in genome organization, expression and stability
    • Mekhail, K. & Moazed, D. The nuclear envelope in genome organization, expression and stability. Nat. Rev. Mol. Cell Biol. 11, 317-328 (2010).
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 317-328
    • Mekhail, K.1    Moazed, D.2
  • 5
    • 0033214237 scopus 로고    scopus 로고
    • The sir2/3/4 complex and sir2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein, M., McVey, M. & Guarente, L. The sir2/3/4 complex and sir2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570-2580 (1999).
    • (1999) Genes Dev. , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 6
    • 79958212812 scopus 로고    scopus 로고
    • Perinuclear cohibin complexes maintain replicative life span via roles at distinct silent chromatin domains
    • Chan, J. N. et al. Perinuclear cohibin complexes maintain replicative life span via roles at distinct silent chromatin domains. Dev. Cell 20, 867-879 (2011).
    • (2011) Dev. Cell , vol.20 , pp. 867-879
    • Chan, J.N.1
  • 7
    • 84904887477 scopus 로고    scopus 로고
    • Roles for pbp1 and caloric restriction in genome and lifespan maintenance via suppression of RNA-DNA hybrids
    • Salvi, J. S. et al. Roles for pbp1 and caloric restriction in genome and lifespan maintenance via suppression of rna-DNA hybrids. Dev. Cell 30, 177-191 (2014).
    • (2014) Dev. Cell , vol.30 , pp. 177-191
    • Salvi, J.S.1
  • 8
    • 57349093701 scopus 로고    scopus 로고
    • Role for perinuclear chromosome tethering in maintenance of genome stability
    • Mekhail, K., Seebacher, J., Gygi, S. P. & Moazed, D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 456, 667-670 (2008).
    • (2008) Nature , vol.456 , pp. 667-670
    • Mekhail, K.1    Seebacher, J.2    Gygi, S.P.3    Moazed, D.4
  • 9
    • 34547591933 scopus 로고    scopus 로고
    • The smc5-smc6 complex and sumo modification of rad52 regulates recombinational repair at the ribosomal gene locus
    • Torres-Rosell, J. et al. The smc5-smc6 complex and sumo modification of rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9, 923-931 (2007).
    • (2007) Nat. Cell Biol. , vol.9 , pp. 923-931
    • Torres-Rosell, J.1
  • 10
    • 79952314830 scopus 로고    scopus 로고
    • Double-strand breaks in heterochromatin move outside of a dynamic hp1a domain to complete recombinational repair
    • Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic hp1a domain to complete recombinational repair. Cell 144, 732-744 (2011).
    • (2011) Cell , vol.144 , pp. 732-744
    • Chiolo, I.1
  • 11
    • 79961207835 scopus 로고    scopus 로고
    • DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone h2ax phosphorylation and relocation to euchromatin
    • Jakob, B. et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone h2ax phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39, 6489-6499 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. 6489-6499
    • Jakob, B.1
  • 12
    • 54949093203 scopus 로고    scopus 로고
    • Functional targeting of DNA damage to a nuclear poreassociated sumo-dependent ubiquitin ligase
    • Nagai, S. et al. Functional targeting of DNA damage to a nuclear poreassociated sumo-dependent ubiquitin ligase. Science 322, 597-602 (2008).
    • (2008) Science , vol.322 , pp. 597-602
    • Nagai, S.1
  • 13
    • 65249150132 scopus 로고    scopus 로고
    • Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery
    • Oza, P., Jaspersen, S. L., Miele, A., Dekker, J. & Peterson, C. L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912-927 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 912-927
    • Oza, P.1    Jaspersen, S.L.2    Miele, A.3    Dekker, J.4    Peterson, C.L.5
  • 14
    • 59649124496 scopus 로고    scopus 로고
    • Chromosome-wide rad51 spreading and sumo-h2a.Z-dependent chromosome fixation in response to a persistent DNA double-strand break
    • Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide rad51 spreading and sumo-h2a.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33, 335-343 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 335-343
    • Kalocsay, M.1    Hiller, N.J.2    Jentsch, S.3
  • 15
    • 84906790073 scopus 로고    scopus 로고
    • Swr1 and ino80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice
    • Horigome, C. et al. Swr1 and ino80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice. Mol. Cell 55, 626-639 (2014).
    • (2014) Mol. Cell , vol.55 , pp. 626-639
    • Horigome, C.1
  • 16
    • 1942503933 scopus 로고    scopus 로고
    • Separation of silencing from perinuclear anchoring functions in yeast ku80, sir4 and esc1 proteins
    • Taddei, A., Hediger, F., Neumann, F. R., Bauer, C. & Gasser, S. M. Separation of silencing from perinuclear anchoring functions in yeast ku80, sir4 and esc1 proteins. EMBO J. 23, 1301-1312 (2004).
    • (2004) EMBO J. , vol.23 , pp. 1301-1312
    • Taddei, A.1    Hediger, F.2    Neumann, F.R.3    Bauer, C.4    Gasser, S.M.5
  • 17
    • 0036968369 scopus 로고    scopus 로고
    • Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the tel1 pathway of telomere length control
    • Hediger, F., Dubrana, K. & Gasser, S. M. Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the tel1 pathway of telomere length control. J. Struct. Biol. 140, 79-91 (2002).
    • (2002) J. Struct. Biol. , vol.140 , pp. 79-91
    • Hediger, F.1    Dubrana, K.2    Gasser, S.M.3
  • 18
    • 0027285362 scopus 로고
    • Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid
    • Bennett, C. B., Lewis, A. L., Baldwin, K. K. & Resnick, M. A. Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc. Natl Acad. Sci. USA 90, 5613-5617 (1993).
    • (1993) Proc. Natl Acad. Sci. USA , vol.90 , pp. 5613-5617
    • Bennett, C.B.1    Lewis, A.L.2    Baldwin, K.K.3    Resnick, M.A.4
  • 19
    • 36849008181 scopus 로고    scopus 로고
    • Telomere anchoring at the nuclear periphery requires the budding yeast sad1-unc-84 domain protein mps3
    • Bupp, J. M., Martin, A. E., Stensrud, E. S. & Jaspersen, S. L. Telomere anchoring at the nuclear periphery requires the budding yeast sad1-unc-84 domain protein mps3. J. Cell Biol. 179, 845-854 (2007).
    • (2007) J. Cell Biol. , vol.179 , pp. 845-854
    • Bupp, J.M.1    Martin, A.E.2    Stensrud, E.S.3    Jaspersen, S.L.4
  • 20
    • 65249165924 scopus 로고    scopus 로고
    • Yeast telomerase and the sun domain protein mps3 anchor telomeres and repress subtelomeric recombination
    • Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R. & Gasser, S. M. Yeast telomerase and the sun domain protein mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 23, 928-938 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 928-938
    • Schober, H.1    Ferreira, H.2    Kalck, V.3    Gehlen, L.R.4    Gasser, S.M.5
  • 21
    • 84866109279 scopus 로고    scopus 로고
    • Structure and function in the budding yeast nucleus
    • Taddei, A. & Gasser, S. M. Structure and function in the budding yeast nucleus. Genetics 192, 107-129 (2012).
    • (2012) Genetics , vol.192 , pp. 107-129
    • Taddei, A.1    Gasser, S.M.2
  • 22
    • 31044432248 scopus 로고    scopus 로고
    • Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region
    • Therizols, P. et al. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J. Cell Biol. 172, 189-199 (2006).
    • (2006) J. Cell Biol. , vol.172 , pp. 189-199
    • Therizols, P.1
  • 23
    • 68249091644 scopus 로고    scopus 로고
    • The DNA damage response at eroded telomeres and tethering to the nuclear pore complex
    • Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nat. Cell Biol. 11, 980-987 (2009).
    • (2009) Nat. Cell Biol. , vol.11 , pp. 980-987
    • Khadaroo, B.1
  • 24
    • 84865364870 scopus 로고    scopus 로고
    • Playing the end game: DNA double-strand break repair pathway choice
    • Chapman, J. R., Taylor, M. R. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497-510 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 497-510
    • Chapman, J.R.1    Taylor, M.R.2    Boulton, S.J.3
  • 25
    • 84901760674 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae rif1 cooperates with mrx-sae2 in promoting DNA-end resection
    • Martina, M., Bonetti, D., Villa, M., Lucchini, G. & Longhese, M. P. Saccharomyces cerevisiae rif1 cooperates with mrx-sae2 in promoting DNA-end resection. EMBO Rep. 15, 695-704 (2014).
    • (2014) EMBO Rep. , vol.15 , pp. 695-704
    • Martina, M.1    Bonetti, D.2    Villa, M.3    Lucchini, G.4    Longhese, M.P.5
  • 26
    • 84901330077 scopus 로고    scopus 로고
    • Template switching during break-induced replication is promoted by the mph1 helicase in saccharomyces cerevisiae
    • Stafa, A., Donnianni, R. A., Timashev, L. A., Lam, A. F. & Symington, L. S. Template switching during break-induced replication is promoted by the mph1 helicase in saccharomyces cerevisiae. Genetics 196, 1017-1028 (2014).
    • (2014) Genetics , vol.196 , pp. 1017-1028
    • Stafa, A.1    Donnianni, R.A.2    Timashev, L.A.3    Lam, A.F.4    Symington, L.S.5
  • 27
    • 0037427471 scopus 로고    scopus 로고
    • Distance from the chromosome end determines the efficiency of double strand break repair in subtelomeres of haploid yeast
    • Ricchetti, M., Dujon, B. & Fairhead, C. Distance from the chromosome end determines the efficiency of double strand break repair in subtelomeres of haploid yeast. J. Mol. Biol. 328, 847-862 (2003).
    • (2003) J. Mol. Biol. , vol.328 , pp. 847-862
    • Ricchetti, M.1    Dujon, B.2    Fairhead, C.3
  • 28
    • 0036889312 scopus 로고    scopus 로고
    • Esc1, a nuclear periphery protein required for sir4-based plasmid anchoring and partitioning
    • Andrulis, E. D. et al. Esc1, a nuclear periphery protein required for sir4-based plasmid anchoring and partitioning. Mol. Cell. Biol. 22, 8292-8301 (2002).
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 8292-8301
    • Andrulis, E.D.1
  • 29
    • 0028158129 scopus 로고
    • Localization of the kar3 kinesin heavy chain-related protein requires the cik1 interacting protein
    • Page, B. D., Satterwhite, L. L., Rose, M. D. & Snyder, M. Localization of the kar3 kinesin heavy chain-related protein requires the cik1 interacting protein. J. Cell Biol. 124, 507-519 (1994).
    • (1994) J. Cell Biol. , vol.124 , pp. 507-519
    • Page, B.D.1    Satterwhite, L.L.2    Rose, M.D.3    Snyder, M.4
  • 30
    • 25144521042 scopus 로고    scopus 로고
    • Kar3 interaction with cik1 alters motor structure and function
    • Chu, H. M. et al. Kar3 interaction with cik1 alters motor structure and function. EMBO J. 24, 3214-3223 (2005).
    • (2005) EMBO J. , vol.24 , pp. 3214-3223
    • Chu, H.M.1
  • 31
    • 23244462047 scopus 로고    scopus 로고
    • Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends
    • Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420-1427 (2005).
    • (2005) Curr. Biol. , vol.15 , pp. 1420-1427
    • Sproul, L.R.1    Anderson, D.J.2    Mackey, A.T.3    Saunders, W.S.4    Gilbert, S.P.5
  • 32
    • 33644778778 scopus 로고    scopus 로고
    • A DNA integrity network in the yeast saccharomyces cerevisiae
    • Pan, X. et al. A DNA integrity network in the yeast saccharomyces cerevisiae. Cell 124, 1069-1081 (2006).
    • (2006) Cell , vol.124 , pp. 1069-1081
    • Pan, X.1
  • 33
    • 36849069846 scopus 로고    scopus 로고
    • Kinetochore microtubule interaction during s phase in saccharomyces cerevisiae
    • Kitamura, E., Tanaka, K., Kitamura, Y. & Tanaka, T. U. Kinetochore microtubule interaction during s phase in saccharomyces cerevisiae. Genes Dev. 21, 3319-3330 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 3319-3330
    • Kitamura, E.1    Tanaka, K.2    Kitamura, Y.3    Tanaka, T.U.4
  • 34
    • 75649111192 scopus 로고    scopus 로고
    • The genetic landscape of a cell
    • Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425-431 (2010).
    • (2010) Science , vol.327 , pp. 425-431
    • Costanzo, M.1
  • 35
    • 84890218831 scopus 로고    scopus 로고
    • An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence
    • Laporte, D., Courtout, F., Salin, B., Ceschin, J. & Sagot, I. An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence. J. Cell Biol. 203, 585-594 (2013).
    • (2013) J. Cell Biol. , vol.203 , pp. 585-594
    • Laporte, D.1    Courtout, F.2    Salin, B.3    Ceschin, J.4    Sagot, I.5
  • 36
    • 0033594117 scopus 로고    scopus 로고
    • Differential regulation of the kar3p kinesin-related protein by two associated proteins, cik1p and vik1p
    • Manning, B. D., Barrett, J. G., Wallace, J. A., Granok, H. & Snyder, M. Differential regulation of the kar3p kinesin-related protein by two associated proteins, cik1p and vik1p. J. Cell Biol. 144, 1219-1233 (1999).
    • (1999) J. Cell Biol. , vol.144 , pp. 1219-1233
    • Manning, B.D.1    Barrett, J.G.2    Wallace, J.A.3    Granok, H.4    Snyder, M.5
  • 37
    • 0037164718 scopus 로고    scopus 로고
    • Live imaging of telomeres: Yku and sir proteins define redundant telomereanchoring pathways in yeast
    • Hediger, F., Neumann, F. R., Van Houwe, G., Dubrana, K. & Gasser, S. M. Live imaging of telomeres: Yku and sir proteins define redundant telomereanchoring pathways in yeast. Curr. Biol. 12, 2076-2089 (2002).
    • (2002) Curr. Biol. , vol.12 , pp. 2076-2089
    • Hediger, F.1    Neumann, F.R.2    Van Houwe, G.3    Dubrana, K.4    Gasser, S.M.5
  • 38
    • 84905638757 scopus 로고    scopus 로고
    • The principal role of ku in telomere length maintenance is promotion of est1 association with telomeres
    • Williams, J. M., Ouenzar, F., Lemon, L. D., Chartrand, P. & Bertuch, A. A. The principal role of ku in telomere length maintenance is promotion of est1 association with telomeres. Genetics 197, 1123-1136 (2014).
    • (2014) Genetics , vol.197 , pp. 1123-1136
    • Williams, J.M.1    Ouenzar, F.2    Lemon, L.D.3    Chartrand, P.4    Bertuch, A.A.5
  • 39
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require pol32
    • Lydeard, J. R., Jain, S., Yamaguchi, M. & Haber, J. E. Break-induced replication and telomerase-independent telomere maintenance require pol32. Nature 448, 820-823 (2007).
    • (2007) Nature , vol.448 , pp. 820-823
    • Lydeard, J.R.1    Jain, S.2    Yamaguchi, M.3    Haber, J.E.4
  • 40
    • 11244269445 scopus 로고    scopus 로고
    • The cdk regulates repair of double-strand breaks by homologous recombination during the cell cycle
    • Aylon, Y., Liefshitz, B. & Kupiec, M. The cdk regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868-4875 (2004).
    • (2004) EMBO J. , vol.23 , pp. 4868-4875
    • Aylon, Y.1    Liefshitz, B.2    Kupiec, M.3
  • 41
    • 7244220162 scopus 로고    scopus 로고
    • DNA end resection, homologous recombination and DNA damage checkpoint activation require cdk1
    • Ira, G. et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require cdk1. Nature 431, 1011-1017 (2004).
    • (2004) Nature , vol.431 , pp. 1011-1017
    • Ira, G.1
  • 42
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, exo1 and sgs1 collaborate in DNA double-strand break processing
    • Mimitou, E. P. & Symington, L. S. Sae2, exo1 and sgs1 collaborate in DNA double-strand break processing. Nature 455, 770-774 (2008).
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 43
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases dna2 and exo1 resect DNA double-strand break ends
    • Zhu, Z., Chung, W. H., Shim, E. Y., Lee, S. E. & Ira, G. Sgs1 helicase and two nucleases dna2 and exo1 resect DNA double-strand break ends. Cell 134, 981-994 (2008).
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5
  • 44
    • 0022814974 scopus 로고
    • Two functional alpha-tubulin genes of the yeast saccharomyces cerevisiae encode divergent proteins
    • Schatz, P. J., Pillus, L., Grisafi, P., Solomon, F. & Botstein, D. Two functional alpha-tubulin genes of the yeast saccharomyces cerevisiae encode divergent proteins. Mol. Cell. Biol. 6, 3711-3721 (1986).
    • (1986) Mol. Cell. Biol. , vol.6 , pp. 3711-3721
    • Schatz, P.J.1    Pillus, L.2    Grisafi, P.3    Solomon, F.4    Botstein, D.5
  • 45
    • 75949088274 scopus 로고    scopus 로고
    • DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery
    • Ahmed, S. et al. DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat. Cell Biol. 12, 111-118 (2010).
    • (2010) Nat. Cell Biol. , vol.12 , pp. 111-118
    • Ahmed, S.1
  • 46
    • 77957377062 scopus 로고    scopus 로고
    • Interaction of a DNA zip code with the nuclear pore complex promotes h2a.Z incorporation and ino1 transcriptional memory
    • Light, W. H., Brickner, D. G., Brand, V. R. & Brickner, J. H. Interaction of a DNA zip code with the nuclear pore complex promotes h2a.Z incorporation and ino1 transcriptional memory. Mol. Cell 40, 112-125 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 112-125
    • Light, W.H.1    Brickner, D.G.2    Brand, V.R.3    Brickner, J.H.4
  • 47
    • 84862128143 scopus 로고    scopus 로고
    • Transcription factor binding to a DNA zip code controls interchromosomal clustering at the nuclear periphery
    • Brickner, D. G. et al. Transcription factor binding to a DNA zip code controls interchromosomal clustering at the nuclear periphery. Dev. Cell 22, 1234-1246 (2012).
    • (2012) Dev. Cell , vol.22 , pp. 1234-1246
    • Brickner, D.G.1
  • 48
    • 77953219442 scopus 로고    scopus 로고
    • Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends
    • Lydeard, J. R., Lipkin-Moore, Z., Jain, S., Eapen, V. V. & Haber, J. E. Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends. PLoS Genet. 6, e1000973 (2010).
    • (2010) PLoS Genet. , vol.6 , pp. e1000973
    • Lydeard, J.R.1    Lipkin-Moore, Z.2    Jain, S.3    Eapen, V.V.4    Haber, J.E.5
  • 49
    • 0032506523 scopus 로고    scopus 로고
    • Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant
    • Song, H. & Endow, S. A. Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant. Nature 396, 587-590 (1998).
    • (1998) Nature , vol.396 , pp. 587-590
    • Song, H.1    Endow, S.A.2
  • 50
    • 59949092789 scopus 로고    scopus 로고
    • A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair
    • Jain, S. et al. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev. 23, 291-303 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 291-303
    • Jain, S.1
  • 51
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and sgs1-top3 suppress crossovers during double-strand break repair in yeast
    • Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and sgs1-top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401-411 (2003).
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 52
    • 0032959506 scopus 로고    scopus 로고
    • Rad50 and rad51 define two pathways that collaborate to maintain telomeres in the absence of telomerase
    • Le, S., Moore, J. K., Haber, J. E. & Greider, C. W. Rad50 and rad51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143-152 (1999).
    • (1999) Genetics , vol.152 , pp. 143-152
    • Le, S.1    Moore, J.K.2    Haber, J.E.3    Greider, C.W.4
  • 53
    • 0033513079 scopus 로고    scopus 로고
    • Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in saccharomyces cerevisiae
    • Teng, S. C. & Zakian, V. A. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083-8093 (1999).
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8083-8093
    • Teng, S.C.1    Zakian, V.A.2
  • 54
    • 77951133257 scopus 로고    scopus 로고
    • Alternative lengthening of telomeres: Models, mechanisms and implications
    • Cesare, A. J. & Reddel, R. R. Alternative lengthening of telomeres: Models, mechanisms and implications. Nat. Rev. Genet. 11, 319-330 (2010).
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 319-330
    • Cesare, A.J.1    Reddel, R.R.2
  • 55
    • 84860500314 scopus 로고    scopus 로고
    • Increased mobility of double-strand breaks requires mec1, rad9 and the homologous recombination machinery
    • Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-strand breaks requires mec1, rad9 and the homologous recombination machinery. Nat. Cell Biol. 14, 502-509 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 502-509
    • Dion, V.1    Kalck, V.2    Horigome, C.3    Towbin, B.D.4    Gasser, S.M.5
  • 56
    • 84860517399 scopus 로고    scopus 로고
    • Increased chromosome mobility facilitates homology search during recombination
    • Mine-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14, 510-517 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 510-517
    • Mine-Hattab, J.1    Rothstein, R.2
  • 57
    • 84875207723 scopus 로고    scopus 로고
    • Chromatin movement in the maintenance of genome stability
    • Dion, V. & Gasser, S. M. Chromatin movement in the maintenance of genome stability. Cell 152, 1355-1364 (2013).
    • (2013) Cell , vol.152 , pp. 1355-1364
    • Dion, V.1    Gasser, S.M.2
  • 58
    • 84964698865 scopus 로고    scopus 로고
    • Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 kar3
    • Mieck, C. et al. Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 kar3. Elife 4, e04489 (2015).
    • (2015) Elife , vol.4 , pp. e04489
    • Mieck, C.1
  • 59
    • 67349108713 scopus 로고    scopus 로고
    • The kinesin-14 klp2 organizes microtubules into parallel bundles by an atp-dependent sorting mechanism
    • Braun, M., Drummond, D. R., Cross, R. A. & McAinsh, A. D. The kinesin-14 klp2 organizes microtubules into parallel bundles by an atp-dependent sorting mechanism. Nat. Cell Biol. 11, 724-730 (2009).
    • (2009) Nat. Cell Biol. , vol.11 , pp. 724-730
    • Braun, M.1    Drummond, D.R.2    Cross, R.A.3    McAinsh, A.D.4
  • 60
    • 67349203203 scopus 로고    scopus 로고
    • The mitotic kinesin-14 ncd drives directional microtubule-microtubule sliding
    • Fink, G. et al. The mitotic kinesin-14 ncd drives directional microtubule-microtubule sliding. Nat. Cell Biol. 11, 717-723 (2009).
    • (2009) Nat. Cell Biol. , vol.11 , pp. 717-723
    • Fink, G.1
  • 61
    • 0021686169 scopus 로고
    • Dynamic instability of microtubule growth
    • Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237-242 (1984).
    • (1984) Nature , vol.312 , pp. 237-242
    • Mitchison, T.1    Kirschner, M.2
  • 62
    • 0030463946 scopus 로고    scopus 로고
    • Lack of chromosome territoriality in yeast: Promiscuous rejoining of broken chromosome ends
    • Haber, J. E. & Leung, W. Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949-13954 (1996).
    • (1996) Proc. Natl Acad. Sci. USA , vol.93 , pp. 13949-13954
    • Haber, J.E.1    Leung, W.Y.2
  • 63
    • 0032562595 scopus 로고    scopus 로고
    • In situ visualization of DNA double-strand break repair in human fibroblasts
    • Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590-592 (1998).
    • (1998) Science , vol.280 , pp. 590-592
    • Nelms, B.E.1    Maser, R.S.2    MacKay, J.F.3    Lagally, M.G.4    Petrini, J.H.5
  • 64
    • 0347988236 scopus 로고    scopus 로고
    • Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains
    • Aten, J. A. et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303, 92-95 (2004).
    • (2004) Science , vol.303 , pp. 92-95
    • Aten, J.A.1
  • 65
    • 33644905252 scopus 로고    scopus 로고
    • Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks
    • Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823-834 (2006).
    • (2006) J. Cell Biol. , vol.172 , pp. 823-834
    • Kruhlak, M.J.1
  • 66
    • 34447574977 scopus 로고    scopus 로고
    • Positional stability of single double-strand breaks in mammalian cells
    • Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol. 9, 675-682 (2007).
    • (2007) Nat. Cell Biol. , vol.9 , pp. 675-682
    • Soutoglou, E.1
  • 68
    • 0036671706 scopus 로고    scopus 로고
    • Recovery from checkpoint-mediated arrest after repair of a double-strand break requires srs2 helicase
    • Vaze, M. B. et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires srs2 helicase. Mol. Cell 10, 373-385 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 373-385
    • Vaze, M.B.1
  • 69
    • 82555165921 scopus 로고    scopus 로고
    • Srs2 enables checkpoint recovery by promoting disassembly of DNA damage foci from chromatin
    • Yeung, M. & Durocher, D. Srs2 enables checkpoint recovery by promoting disassembly of DNA damage foci from chromatin. DNA Repair (Amst) 10, 1213-1222 (2011).
    • (2011) DNA Repair (Amst) , vol.10 , pp. 1213-1222
    • Yeung, M.1    Durocher, D.2
  • 70
    • 26444477373 scopus 로고    scopus 로고
    • Automatic tracking of individual fluorescence particles: Application to the study of chromosome dynamics
    • Sage, D., Neumann, F. R., Hediger, F., Gasser, S. M. & Unser, M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 14, 1372-1383 (2005).
    • (2005) IEEE Trans Image Process , vol.14 , pp. 1372-1383
    • Sage, D.1    Neumann, F.R.2    Hediger, F.3    Gasser, S.M.4    Unser, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.