메뉴 건너뛰기




Volumn 138, Issue , 2015, Pages 1-24

A survey on face detection in the wild: Past, present and future

Author keywords

Boosting; Deep neural networks; Deformable models; Face detection; Feature extraction

Indexed keywords

ALGORITHMS; COMPUTER VISION; DEFORMATION; FEATURE EXTRACTION; SURVEYS;

EID: 84937629991     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2015.03.015     Document Type: Article
Times cited : (413)

References (220)
  • 3
  • 10
    • 84899430339 scopus 로고    scopus 로고
    • cited August 2014
    • A. Robotics, Nao Robot. < http://www.aldebaran.com/en > (cited August 2014).
    • Nao Robot
    • Robotics, A.1
  • 14
    • 0015567825 scopus 로고
    • The representation and matching of pictorial structures
    • M.A. Fischler, R.A. Elschlager The representation and matching of pictorial structures IEEE Trans. Comput. 22 1 1973 67 92
    • (1973) IEEE Trans. Comput. , vol.22 , Issue.1 , pp. 67-92
    • Fischler, M.A.1    Elschlager, R.A.2
  • 17
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proc. of CVPR, 2001.
    • Proc. of CVPR , pp. 2001
    • Viola, P.1    Jones, M.2
  • 18
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D.G. Lowe Distinctive image features from scale-invariant keypoints Int. J. Comput. Vision 60 2 2004 91 110
    • (2004) Int. J. Comput. Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 19
    • 33645146449 scopus 로고    scopus 로고
    • Histogram of oriented gradients for human detection
    • N. Dalal, B. Triggs, Histogram of oriented gradients for human detection, in: Proc. of CVPR, 2005.
    • Proc. of CVPR , pp. 2005
    • Dalal, N.1    Triggs, B.2
  • 20
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • T. Ojala, M. Pietikäinen, T. Mäenpää Multiresolution gray-scale and rotation invariant texture classification with local binary patterns IEEE Trans. PAMI 24 2002 971 987
    • (2002) IEEE Trans. PAMI , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 22
    • 84884998421 scopus 로고    scopus 로고
    • Local transform features and hybridization for accurate face and human detection
    • B. Jun, I. Choi, D. Kim Local transform features and hybridization for accurate face and human detection IEEE Trans. Pattern Anal. Mach. Intell. 35 6 2013 1423 1436
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.6 , pp. 1423-1436
    • Jun, B.1    Choi, I.2    Kim, D.3
  • 24
    • 77949875753 scopus 로고    scopus 로고
    • Daisy: an efficient dense descriptor applied to wide-baseline stereo
    • E. Tola, V. Lepetit, P. Fua Daisy: an efficient dense descriptor applied to wide-baseline stereo IEEE Trans. Pattern Anal. Mach. Intell. 32 5 2010 815 830
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.5 , pp. 815-830
    • Tola, E.1    Lepetit, V.2    Fua, P.3
  • 29
    • 51849117118 scopus 로고    scopus 로고
    • Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
    • Tech. rep., University of Massachusetts, Amherst
    • G.B. Huang, R. Ramesh, T. Berg, E. Learned-Miller, Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments., Tech. rep., University of Massachusetts, Amherst, Technical Report 07-49, 2007.
    • (2007) Technical Report 07-49
    • Huang, G.B.1    Ramesh, R.2    Berg, T.3    Learned-Miller, E.4
  • 31
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Springer
    • Y. Freund, R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting Computational Learning Theory 1995 Springer 23 37
    • (1995) Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 32
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, V. Vapnik Support-vector networks Mach. Learn. 20 3 1995 273 297
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 39
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • P. Viola, M.J. Jones Robust real-time face detection Int. J. Comput. Vis. 57 2 2004 137 154
    • (2004) Int. J. Comput. Vis. , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.J.2
  • 40
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, P. Haffner Gradient-based learning applied to document recognition Proc. IEEE 86 11 1998 2278 2324
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 45
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection with interleaved categorization and segmentation
    • B. Leibe, A. Leonardis, B. Schiele Robust object detection with interleaved categorization and segmentation Int. J. Comput. Vis. 77 1-3 2008 259 289
    • (2008) Int. J. Comput. Vis. , vol.77 , Issue.1-3 , pp. 259-289
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 46
    • 0019397313 scopus 로고
    • Generalizing the hough transform to detect arbitrary shapes
    • D.H. Ballard Generalizing the hough transform to detect arbitrary shapes Pattern Recogn. 13 2 1981 111 122
    • (1981) Pattern Recogn. , vol.13 , Issue.2 , pp. 111-122
    • Ballard, D.H.1
  • 49
    • 1542315968 scopus 로고    scopus 로고
    • Object detection using the statistics of parts
    • H. Schneiderman, T. Kanade Object detection using the statistics of parts Int. J. Comput. Vision 56 3 2004 151 177
    • (2004) Int. J. Comput. Vision , vol.56 , Issue.3 , pp. 151-177
    • Schneiderman, H.1    Kanade, T.2
  • 50
    • 24644521635 scopus 로고    scopus 로고
    • Human detection based on a probabilistic assembly of robust part detectors
    • K. Mikolajczyk, C. Schmid, A. Zisserman, Human detection based on a probabilistic assembly of robust part detectors, in: Proc. of ECCV, 2004.
    • (2004) Proc. of ECCV
    • Mikolajczyk, K.1    Schmid, C.2    Zisserman, A.3
  • 53
    • 0021454284 scopus 로고
    • Summed-area tables for texture mapping
    • F. Crow, Summed-area tables for texture mapping, in: Proc. of SIGGRAPH, vol. 18, 1984, pp. 207-212.
    • (1984) Proc. of SIGGRAPH , vol.18 , pp. 207-212
    • Crow, F.1
  • 54
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • S. Mendelson A.J. Smola Springer-Verlag Berlin Heidelberg
    • R. Meir, G. Rätsch An introduction to boosting and leveraging S. Mendelson A.J. Smola Advanced Lectures on Machine Learning 2003 Springer-Verlag Berlin Heidelberg 118 183
    • (2003) Advanced Lectures on Machine Learning , pp. 118-183
    • Meir, R.1    Rätsch, G.2
  • 57
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 55 1 1997 119 139
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 58
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R.E. Schapire, Y. Singer Improved boosting algorithms using confidence-rated predictions Mach. Learn. 37 1999 297 336
    • (1999) Mach. Learn. , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 62
    • 33745928468 scopus 로고    scopus 로고
    • Joint Haar-Like Features for Face Detection
    • T. Mita, T. Kaneko, O. Hori, Joint Haar-Like Features for Face Detection, in: Proc. of ICCV, 2005.
    • (2005) Proc. of ICCV
    • Mita, T.1    Kaneko, T.2    Hori, O.3
  • 63
    • 17744406666 scopus 로고    scopus 로고
    • An Extended Set of Haar-Like Features for Rapid Object Detection
    • R. Lienhart, J. Maydt, An Extended Set of Haar-Like Features for Rapid Object Detection, in: Proc. of ICIP, 2002.
    • (2002) Proc. of ICIP
    • Lienhart, R.1    Maydt, J.2
  • 64
    • 4544325922 scopus 로고    scopus 로고
    • Tech. Rep., Mitsubishi Electric Research Laboratories, TR2003-96
    • M. Jones, P. Viola, Fast Multi-View Face Detection, Tech. Rep., Mitsubishi Electric Research Laboratories, TR2003-96, 2003.
    • (2003) Fast Multi-View Face Detection
    • Jones, M.1    Viola, P.2
  • 67
    • 33745946094 scopus 로고    scopus 로고
    • Vector boosting for rotation invariant multi-view face detection
    • C. Huang, H. Ai, Y. Li, S. Lao, Vector boosting for rotation invariant multi-view face detection, in: Proc. of ICCV, 2005.
    • (2005) Proc. of ICCV
    • Huang, C.1    Ai, H.2    Li, Y.3    Lao, S.4
  • 73
    • 51949104909 scopus 로고    scopus 로고
    • Locally assembled binary (LAB) feature with feature-centric cascade for fast and accurate face detection
    • S. Yan, S. Shan, X. Chen, W. Gao, Locally assembled binary (LAB) feature with feature-centric cascade for fast and accurate face detection, in: Proc. of CVPR, 2008.
    • (2008) Proc. of CVPR
    • Yan, S.1    Shan, S.2    Chen, X.3    Gao, W.4
  • 75
    • 34147118418 scopus 로고    scopus 로고
    • Face detection with boosted gaussian features
    • J. Meynet, V. Popovici, J.-P. Thiran Face detection with boosted gaussian features Pattern Recogn. 40 8 2007 2283 2291
    • (2007) Pattern Recogn. , vol.40 , Issue.8 , pp. 2283-2291
    • Meynet, J.1    Popovici, V.2    Thiran, J.-P.3
  • 76
    • 0035683405 scopus 로고    scopus 로고
    • Learning representative local features for face detection
    • X. Chen, L. Gu, S.Z. Li, H.-J. Zhang, Learning representative local features for face detection, in: Proc. of CVPR, 2001.
    • (2001) Proc. of CVPR
    • Chen, X.1    Guc, L.2    Li, S.Z.3    Zhang, H.-J.4
  • 77
    • 24644467770 scopus 로고    scopus 로고
    • Learning discriminant features for multi-view face and eye detection
    • P. Wang, Q. Ji, Learning discriminant features for multi-view face and eye detection, in: Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Wang, P.1    Ji, Q.2
  • 80
    • 5044232103 scopus 로고    scopus 로고
    • Learning object detection from a small number of examples: The importance of good features
    • K. Levi, Y. Weiss, Learning object detection from a small number of examples: The importance of good features, in: Proc. of CVPR, 2004.
    • (2004) Proc. of CVPR
    • Levi, K.1    Weiss, Y.2
  • 81
    • 33845597667 scopus 로고    scopus 로고
    • Fast human detection using a cascade of histograms of oriented gradients
    • Q. Zhu, S. Avidan, M.-C. Yeh, K.-T. Cheng, Fast human detection using a cascade of histograms of oriented gradients, in: Proc. of CVPR, 2006.
    • (2006) Proc. of CVPR
    • Zhu, Q.1    Avidan, S.2    Yeh, M.-C.3    Cheng, K.-T.4
  • 84
    • 84898025694 scopus 로고    scopus 로고
    • Improvements of object detection using boosted histograms
    • I. Laptev, Improvements of object detection using boosted histograms, in: British Machine Vision Conference, 2006.
    • (2006) British Machine Vision Conference
    • Laptev, I.1
  • 85
    • 70350620710 scopus 로고    scopus 로고
    • Monocular pedestrian detection: survey and experiments
    • M. Enzweiler, D.M. Gavrila Monocular pedestrian detection: survey and experiments IEEE Trans. PAMI 31 12 2009 2179 2195
    • (2009) IEEE Trans. PAMI , vol.31 , Issue.12 , pp. 2179-2195
    • Enzweiler, M.1    Gavrila, D.M.2
  • 87
    • 33646680085 scopus 로고    scopus 로고
    • Object detection using spatial histogram features
    • H. Zhang, W. Gao, X. Chen, D. Zhao Object detection using spatial histogram features Image Vis. Comput. 24 4 2006 327 341
    • (2006) Image Vis. Comput. , vol.24 , Issue.4 , pp. 327-341
    • Zhang, H.1    Gao, W.2    Chen, X.3    Zhao, D.4
  • 88
    • 85020603202 scopus 로고    scopus 로고
    • An HOG-LBP human detector with partial occlusion handling
    • X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in: Proc. of ICCV, 2009.
    • (2009) Proc. of ICCV
    • Wang, X.1    Han, T.X.2    Yan, S.3
  • 89
    • 33748781681 scopus 로고    scopus 로고
    • Region covariance: A fast descriptor for detection and classification
    • O. Tuzel, F. Porikli, P. Meer, Region covariance: A fast descriptor for detection and classification, in: Proc. of ECCV, 2006.
    • (2006) Proc. of ECCV
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 91
    • 51949105360 scopus 로고    scopus 로고
    • Mining compositional features for boosting
    • J. Yuan, J. Luo, Y. Wu, Mining compositional features for boosting, in: Proc. of CVPR, 2008.
    • (2008) Proc. of CVPR
    • Yuan, J.1    Luo, J.2    Wu, Y.3
  • 92
    • 51949111395 scopus 로고    scopus 로고
    • Discovering class specific composite features through discriminative sampling with Swendsen-Wang cut
    • F. Han, Y. Shan, H.S. Sawhney, R. Kumar, Discovering class specific composite features through discriminative sampling with Swendsen-Wang cut, in: Proc. of CVPR, 2008.
    • (2008) Proc. of CVPR
    • Han, F.1    Shan, Y.2    Sawhney, H.S.3    Kumar, R.4
  • 93
    • 50649114155 scopus 로고    scopus 로고
    • Gradient feature selection for online boosting
    • X. Liu, T. Yu, Gradient feature selection for online boosting, in: Proc. of ICCV, 2007.
    • (2007) Proc. of ICCV
    • Liu, X.1    Yu, T.2
  • 94
  • 96
    • 33745943636 scopus 로고    scopus 로고
    • Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors
    • B. Wu, R. Nevatia, Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors, in: Proc. of ICCV, 2005.
    • (2005) Proc. of ICCV
    • Wu, B.1    Nevatia, R.2
  • 97
    • 34948834722 scopus 로고    scopus 로고
    • Detecting pedestrians by learning shapelet features
    • P. Sabzmeydani, G. Mori, Detecting pedestrians by learning shapelet features, in: Proc. of CVPR, 2007.
    • (2007) Proc. of CVPR
    • Sabzmeydani, P.1    Mori, G.2
  • 98
    • 34948899361 scopus 로고    scopus 로고
    • Simultaneous object detection and segmentation by boosting local shape feature based classifier
    • B. Wu, R. Nevatia, Simultaneous object detection and segmentation by boosting local shape feature based classifier, in: Proc. of CVPR, 2007.
    • (2007) Proc. of CVPR
    • Wu, B.1    Nevatia, R.2
  • 99
    • 70450182223 scopus 로고    scopus 로고
    • Adaptive contour features in oriented granular space for human detection and segmentation
    • W. Gao, H. Ai, S. Lao, Adaptive contour features in oriented granular space for human detection and segmentation, in: Proc. of CVPR, 2009.
    • (2009) Proc. of CVPR
    • Gao, W.1    Ai, H.2    Lao, S.3
  • 106
    • 24644457809 scopus 로고    scopus 로고
    • Robust object detection via soft cascade
    • L. Bourdev, J. Brandt, Robust object detection via soft cascade, in: Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Bourdev, L.1    Brandt, J.2
  • 108
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovicova, J. Kittler Floating search methods in feature selection Pattern Recogn. Lett. 15 11 1994 1119 1125
    • (1994) Pattern Recogn. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 109
    • 53349178742 scopus 로고    scopus 로고
    • Fast and robust face detection using evolutionary pruning
    • J.-S. Jang, J.-H. Kim Fast and robust face detection using evolutionary pruning IEEE Trans. Evol. Comput. 12 5 2008 562 571
    • (2008) IEEE Trans. Evol. Comput. , vol.12 , Issue.5 , pp. 562-571
    • Jang, J.-S.1    Kim, J.-H.2
  • 110
    • 0344551825 scopus 로고    scopus 로고
    • Boosting chain learning for object detection
    • R. Xiao, L. Zhu, H. Zhang, Boosting chain learning for object detection, in: Proc. of ICCV, 2003.
    • (2003) Proc. of ICCV
    • Xiao, R.1    Zhu, L.2    Zhang, H.3
  • 111
    • 84898979550 scopus 로고    scopus 로고
    • Fast and robust classification using asymmetric AdaBoost and a detector cascade
    • P. Viola, M. Jones, Fast and robust classification using asymmetric AdaBoost and a detector cascade, in: Proc. of NIPS, 2002.
    • (2002) Proc. of NIPS
    • Viola, P.1    Jones, M.2
  • 112
    • 34948865217 scopus 로고    scopus 로고
    • Online learning asymmetric boosted classifiers for object detection
    • M.-T. Pham, T.-J. Cham, Online learning asymmetric boosted classifiers for object detection, in: Proc. of CVPR, 2007.
    • (2007) Proc. of CVPR
    • Pham, M.-T.1    Cham, T.-J.2
  • 115
    • 50649084970 scopus 로고    scopus 로고
    • High detection-rate cascades for real-time object detection
    • H. Masnadi-Shirazi, N. Vasconcelos, High detection-rate cascades for real-time object detection, in: Proc. of ICCV, 2007.
    • (2007) Proc. of ICCV
    • Masnadi-Shirazi, H.1    Vasconcelos, N.2
  • 118
    • 24644524727 scopus 로고    scopus 로고
    • Waldboost - learning for time constrained sequential detection
    • J. Sochman, J. Matas, Waldboost - learning for time constrained sequential detection, in: Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Sochman, J.1    Matas, J.2
  • 120
    • 24644498195 scopus 로고    scopus 로고
    • Optimization design of cascaded classifiers
    • H. Luo, Optimization design of cascaded classifiers, in: Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Luo, H.1
  • 121
    • 70450187477 scopus 로고    scopus 로고
    • Multiple-instance pruning for learning efficient cascade detectors
    • C. Zhang, P. Viola, Multiple-instance pruning for learning efficient cascade detectors, in: Proc. of NIPS, 2007.
    • (2007) Proc. of NIPS
    • Zhang, C.1    Viola, P.2
  • 123
    • 84898993295 scopus 로고    scopus 로고
    • Learning a rare event detection cascade by direct feature selection
    • J. Wu, J.M. Rehg, M.D. Mullin, Learning a rare event detection cascade by direct feature selection, in: Proc. of NIPS, vol. 16, 2004.
    • (2004) Proc. of NIPS , vol.16
    • Wu, J.1    Rehg, J.M.2    Mullin, M.D.3
  • 125
    • 50549099244 scopus 로고    scopus 로고
    • Fast training and selection of haar features during statistics in boosting-based face detection
    • M.-T. Pham, T.-J. Cham, Fast training and selection of haar features during statistics in boosting-based face detection, in: Proc. of ICCV, 2007.
    • (2007) Proc. of ICCV
    • Pham, M.-T.1    Cham, T.-J.2
  • 126
    • 33744958383 scopus 로고    scopus 로고
    • Integral histogram: a fastway to extract histograms in cartesian spaces
    • F. Porikli, Integral histogram: a fastway to extract histograms in cartesian spaces, in: Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Porikli, F.1
  • 127
    • 84973228018 scopus 로고    scopus 로고
    • Feature-centric evaluation for efficient cascaded object detection
    • H. Schneiderman, Feature-centric evaluation for efficient cascaded object detection, in: Proc. of CVPR, 2004.
    • (2004) Proc. of CVPR
    • Schneiderman, H.1
  • 128
    • 84973248031 scopus 로고    scopus 로고
    • Detection caching for faster object detection
    • M.-T. Pham, T.-J. Cham, Detection caching for faster object detection, in: Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Pham, M.-T.1    Cham, T.-J.2
  • 129
    • 0035012577 scopus 로고    scopus 로고
    • S-tree: self-organizing trees for data clustering and online vector quantization
    • M.M. Campos, G.A. Carpenter S-tree: self-organizing trees for data clustering and online vector quantization Neural Networks 14 4-5 2001 505 525
    • (2001) Neural Networks , vol.14 , Issue.4-5 , pp. 505-525
    • Campos, M.M.1    Carpenter, G.A.2
  • 131
    • 33646702753 scopus 로고    scopus 로고
    • Robust face detection with multi-class boosting
    • Y.-Y. Lin, T.-L. Liu, Robust face detection with multi-class boosting, in: Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Lin, Y.-Y.1    Liu, T.-L.2
  • 132
    • 5044224293 scopus 로고    scopus 로고
    • Sharing features: Efficient boosting procedures for multiclass object detection
    • A. Torralba, K.P. Murphy, W.T. Freeman, Sharing features: Efficient boosting procedures for multiclass object detection, in: Proc. of CVPR, 2004.
    • (2004) Proc. of CVPR
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 135
    • 33845584551 scopus 로고    scopus 로고
    • Learning exemplar-based categorization for the detection of multi-view multi-pose objects
    • Y. Shan, F. Han, H.S. Sawhney, R. Kumar, Learning exemplar-based categorization for the detection of multi-view multi-pose objects, in: Proc. of CVPR, 2006.
    • (2006) Proc. of CVPR
    • Shan, Y.1    Han, F.2    Sawhney, H.S.3    Kumar, R.4
  • 136
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering
    • Z. Tu, Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering, in: Proc. of ICCV, 2005.
    • (2005) Proc. of ICCV
    • Tu, Z.1
  • 137
    • 50649118116 scopus 로고    scopus 로고
    • Cluster boosted tree classifier for multi-view, multi-pose object detection
    • B. Wu, R. Nevatia, Cluster boosted tree classifier for multi-view, multi-pose object detection, in: Proc. of ICCV, 2007.
    • (2007) Proc. of ICCV
    • Wu, B.1    Nevatia, R.2
  • 138
    • 77956516760 scopus 로고    scopus 로고
    • MCBoost: Multiple classifier boosting for perceptual co-clustering of images and visual features
    • T.-K. Kim, R. Cipolla, MCBoost: Multiple classifier boosting for perceptual co-clustering of images and visual features, in: Proc. of NIPS, 2008.
    • (2008) Proc. of NIPS
    • Kim, T.-K.1    Cipolla, R.2
  • 139
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • P. Viola, J.C. Platt, C. Zhang, Multiple instance boosting for object detection, in: Proc. of NIPS, vol. 18, 2005.
    • (2005) Proc. of NIPS , vol.18
    • Viola, P.1    Platt, J.C.2    Zhang, C.3
  • 145
    • 12844263684 scopus 로고    scopus 로고
    • Convolutional face finder: a neural architecture for fast and robust face detection
    • C. Garcia, M. Delakis Convolutional face finder: a neural architecture for fast and robust face detection IEEE Trans. PAMI 26 11 2004 1408 1423
    • (2004) IEEE Trans. PAMI , vol.26 , Issue.11 , pp. 1408-1423
    • Garcia, C.1    Delakis, M.2
  • 146
    • 34249661090 scopus 로고    scopus 로고
    • Synergistic face detection and pose estimation with energy-based models
    • M. Osadchy, Y.L. Cun, M.L. Miller Synergistic face detection and pose estimation with energy-based models J. Mach. Learn. Res. 8 2007 1197 1215
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1197-1215
    • Osadchy, M.1    Cun, Y.L.2    Miller, M.L.3
  • 150
    • 0035392827 scopus 로고    scopus 로고
    • Antifaces: a novel fast method for image detection
    • D. Keren, M. Osadchy, C. Gotsman Antifaces: a novel fast method for image detection IEEE Trans. PAMI 23 7 2001 747 761
    • (2001) IEEE Trans. PAMI , vol.23 , Issue.7 , pp. 747-761
    • Keren, D.1    Osadchy, M.2    Gotsman, C.3
  • 151
    • 0038719890 scopus 로고    scopus 로고
    • A bayesian discriminating features method for face detection
    • C. Liu A bayesian discriminating features method for face detection IEEE Trans. PAMI 25 6 2003 725 740
    • (2003) IEEE Trans. PAMI , vol.25 , Issue.6 , pp. 725-740
    • Liu, C.1
  • 153
    • 0030673582 scopus 로고    scopus 로고
    • Training support vector machines: An application to face detection
    • E. Osuna, R. Freund, F. Girosi, Training support vector machines: An application to face detection, in: Proc. of CVPR, 1997.
    • (1997) Proc. of CVPR
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 156
    • 84937641314 scopus 로고    scopus 로고
    • Efficient face detection by a cascaded support vector machine using haar-like features
    • M. Rätsch, S. Romdhani, T. Vetter, Efficient face detection by a cascaded support vector machine using haar-like features, in: Pattern Recognition Symposium, 2004.
    • (2004) Pattern Recognition Symposium
    • Rätsch, M.1    Romdhani, S.2    Vetter, T.3
  • 157
    • 0038647814 scopus 로고    scopus 로고
    • Hierarchical classification and feature reduction for fast face detection with support vector machines
    • B. Heisele, T. Serre, S. Prentice, T. Poggio Hierarchical classification and feature reduction for fast face detection with support vector machines Pattern Recogn. 36 2003 2007 2017
    • (2003) Pattern Recogn. , vol.36 , pp. 2007-2017
    • Heisele, B.1    Serre, T.2    Prentice, S.3    Poggio, T.4
  • 161
    • 10044276703 scopus 로고    scopus 로고
    • Multi-view face detection under complex scene based on combined SVMs
    • P. Wang, Q. Ji, Multi-view face detection under complex scene based on combined SVMs, in: Proc. of ICPR, 2004.
    • (2004) Proc. of ICPR
    • Wang, P.1    Ji, Q.2
  • 162
    • 44649107641 scopus 로고    scopus 로고
    • View independent face detection based on combination of local and global kernels
    • K. Hotta, View independent face detection based on combination of local and global kernels, in: International Conference on Computer Vision Systems, 2007.
    • (2007) International Conference on Computer Vision Systems
    • Hotta, K.1
  • 164
    • 84906785116 scopus 로고    scopus 로고
    • Face detection by structural models
    • J. Yan, X. Zhang, Z. Lei, S.Z. Li Face detection by structural models Image Vis. Comput. 32 10 2014 790 799
    • (2014) Image Vis. Comput. , vol.32 , Issue.10 , pp. 790-799
    • Yan, J.1    Zhang, X.2    Lei, Z.3    Li, S.Z.4
  • 166
    • 85162400980 scopus 로고    scopus 로고
    • Rapid deformable object detection using dual-tree branch-and-bound
    • I. Kokkinos, Rapid deformable object detection using dual-tree branch-and-bound, in: Advances in Neural Information Processing Systems, 2011, pp. 2681-2689.
    • (2011) Advances in Neural Information Processing Systems , pp. 2681-2689
    • Kokkinos, I.1
  • 167
    • 84867882646 scopus 로고    scopus 로고
    • Exact acceleration of linear object detectors
    • Springer
    • C. Dubout, F. Fleuret Exact acceleration of linear object detectors Computer Vision-ECCV 2012 2012 Springer 301 311
    • (2012) Computer Vision-ECCV 2012 , pp. 301-311
    • Dubout, C.1    Fleuret, F.2
  • 170
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow, C. Liu Approximating discrete probability distributions with dependence trees IEEE Trans. Inf. Theory 14 3 1968 462 467
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 171
  • 172
    • 79851513710 scopus 로고    scopus 로고
    • Deformable model fitting by regularized landmark mean-shift
    • J.M. Saragih, S. Lucey, J.F. Cohn Deformable model fitting by regularized landmark mean-shift Int. J. Comput. Vision 91 2 2011 200 215
    • (2011) Int. J. Comput. Vision , vol.91 , Issue.2 , pp. 200-215
    • Saragih, J.M.1    Lucey, S.2    Cohn, J.F.3
  • 175
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • T. Joachims, T. Finley, C.-N.J. Yu Cutting-plane training of structural SVMs Mach. Learn. 77 1 2009 27 59
    • (2009) Mach. Learn. , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.J.3
  • 180
    • 10044252413 scopus 로고    scopus 로고
    • Nonparametric density estimation: toward computational tractability
    • SIAM
    • A.G. Gray, A.W. Moore, Nonparametric density estimation: toward computational tractability, in: SDM, SIAM, 2003, pp. 203-211.
    • (2003) SDM , pp. 203-211
    • Gray, A.G.1    Moore, A.W.2
  • 181
    • 84867876999 scopus 로고    scopus 로고
    • Crosstalk cascades for frame-rate pedestrian detection
    • Springer
    • P. Dollár, R. Appel, W. Kienzle Crosstalk cascades for frame-rate pedestrian detection Computer Vision-ECCV 2012 2012 Springer 645 659
    • (2012) Computer Vision-ECCV 2012 , pp. 645-659
    • Dollár, P.1    Appel, R.2    Kienzle, W.3
  • 182
    • 33745960235 scopus 로고    scopus 로고
    • Learning a restricted bayesian network for object detection
    • H. Schneiderman, Learning a restricted bayesian network for object detection, in: Proc. of CVPR, 2004.
    • (2004) Proc. of CVPR
    • Schneiderman, H.1
  • 184
    • 0035305653 scopus 로고    scopus 로고
    • Example-based object detection in images by components
    • A. Mohan, C. Papageorgiou, T. Poggio Example-based object detection in images by components IEEE Trans. PAMI 23 4 2001 349 361
    • (2001) IEEE Trans. PAMI , vol.23 , Issue.4 , pp. 349-361
    • Mohan, A.1    Papageorgiou, C.2    Poggio, T.3
  • 186
    • 34248388087 scopus 로고    scopus 로고
    • A component-based framework for face detection and identification
    • B. Heisele, T. Serre, T. Poggio A component-based framework for face detection and identification Int. J. Comput. Vision 74 2 2007 167 181
    • (2007) Int. J. Comput. Vision , vol.74 , Issue.2 , pp. 167-181
    • Heisele, B.1    Serre, T.2    Poggio, T.3
  • 193
    • 0031648023 scopus 로고    scopus 로고
    • Example-based learning for view-based face detection
    • K. Sung, T. Poggio Example-based learning for view-based face detection IEEE Trans. PAMI 20 1998 39 51
    • (1998) IEEE Trans. PAMI , vol.20 , pp. 39-51
    • Sung, K.1    Poggio, T.2
  • 196
    • 0004009636 scopus 로고    scopus 로고
    • A statistical model for 3d object detection applied to faces and cars
    • H. Schneiderman, T. Kanade, A statistical model for 3d object detection applied to faces and cars, in: Proc. of CVPR, 2000.
    • (2000) Proc. of CVPR
    • Schneiderman, H.1    Kanade, T.2
  • 210
    • 84867841321 scopus 로고    scopus 로고
    • Diagnosing error in object detectors
    • Springer
    • D. Hoiem, Y. Chodpathumwan, Q. Dai Diagnosing error in object detectors ECCV 2012 2012 Springer 340 353
    • (2012) ECCV 2012 , pp. 340-353
    • Hoiem, D.1    Chodpathumwan, Y.2    Dai, Q.3
  • 215
    • 67349130133 scopus 로고    scopus 로고
    • Context-aware visual tracking
    • M. Yang, Y. Wu, G. Hua Context-aware visual tracking IEEE Trans. PAMI 31 7 2009 1195 1209
    • (2009) IEEE Trans. PAMI , vol.31 , Issue.7 , pp. 1195-1209
    • Yang, M.1    Wu, Y.2    Hua, G.3
  • 220
    • 51949113483 scopus 로고    scopus 로고
    • Taylor expansion based classifier adaptation: application to person detection
    • C. Zhang, R. Hamid, Z. Zhang, Taylor expansion based classifier adaptation: application to person detection, in: Proc. of CVPR, 2008.
    • (2008) Proc. of CVPR
    • Zhang, C.1    Hamid, R.2    Zhang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.