메뉴 건너뛰기




Volumn 2, Issue , 2004, Pages

Sharing features: Efficient boosting procedures for multiclass object detection

Author keywords

[No Author keywords available]

Indexed keywords

ADDITIVE MODELS; IMAGE CLASSIFICATION; INPUT FEATURES; SUPPORT VECTOR MACHINES (SVM);

EID: 5044224293     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (514)

References (22)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach for margin classifiers. J. of Machine Learning Research, pages 113-141, 2000.
    • (2000) J. of Machine Learning Research , pp. 113-141
    • Allwein, E.1    Schapire, R.2    Singer, Y.3
  • 2
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Rich Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 3
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via ECOCs
    • T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via ECOCs. J. of AI Research, 2:263-286, 1995.
    • (1995) J. of AI Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 4
    • 0031590124 scopus 로고    scopus 로고
    • A model of visual recognition and categorization
    • S. Edelman and S. Duvdevani-Bar. A model of visual recognition and categorization. Phil. Trans. Royal Soc. B, 352:1191-1202, 1997.
    • (1997) Phil. Trans. Royal Soc. B , vol.352 , pp. 1191-1202
    • Edelman, S.1    Duvdevani-Bar, S.2
  • 6
    • 0003660631 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Dept. of Statistics, Stanford University
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Technical report, Dept. of Statistics, Stanford University, 1998.
    • (1998) Technical Report
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 7
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of statistics, 38(2):337-374, 2000.
    • (2000) Annals of Statistics , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 5044222632 scopus 로고    scopus 로고
    • Sequential learning of reusable parts for object detection
    • CS Johns Hopkins
    • S. Krempp, D. Geman, and Y. Amit. Sequential learning of reusable parts for object detection. Technical report, CS Johns Hopkins, 2002.
    • (2002) Technical Report
    • Krempp, S.1    Geman, D.2    Amit, Y.3
  • 11
    • 4344574812 scopus 로고    scopus 로고
    • Empirical analysis of detection cascades of boosted classifiers for rapid object detection
    • R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analysis of detection cascades of boosted classifiers for rapid object detection. In DAGM, 2003.
    • (2003) DAGM
    • Lienhart, R.1    Kuranov, A.2    Pisarevsky, V.3
  • 14
    • 0031570069 scopus 로고    scopus 로고
    • SEEMORE: Combining color, shape and texture histogramming in a neurally-inspired approach to visual object recognition
    • B. W. Mel. SEEMORE: Combining color, shape and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Computation, 9(4):777-804, 1997.
    • (1997) Neural Computation , vol.9 , Issue.4 , pp. 777-804
    • Mel, B.W.1
  • 15
    • 0029220876 scopus 로고
    • Visual learning and recognition of 3-d objects from appearance
    • H. Murase and S. Nayar. Visual learning and recognition of 3-d objects from appearance. Intl. J. Computer Vision, 14:5-24, 1995.
    • (1995) Intl. J. Computer Vision , vol.14 , pp. 5-24
    • Murase, H.1    Nayar, S.2
  • 16
    • 0034206769 scopus 로고    scopus 로고
    • A trainable system for object detection
    • C. Papageorgiou and T. Poggio. A trainable system for object detection. Intl. J. Computer Vision, 38(1):15-33, 2000.
    • (2000) Intl. J. Computer Vision , vol.38 , Issue.1 , pp. 15-33
    • Papageorgiou, C.1    Poggio, T.2
  • 19
    • 0344120211 scopus 로고    scopus 로고
    • Affine-invariant local descriptors and neighborhood statistics for texture recognition
    • S.Lazebnik, C. Schmid, and J. Ponce. Affine-invariant local descriptors and neighborhood statistics for texture recognition. In Intl. Conf. on Computer Vision, 2003.
    • (2003) Intl. Conf. on Computer Vision
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 20
    • 5044221372 scopus 로고    scopus 로고
    • Sharing visual features for multiclass and multiview object detection
    • CSAIL Technical report, MIT
    • A. Torralba, K. Murphy, and W. Freeman. Sharing visual features for multiclass and multiview object detection. Technical report, CSAIL Technical report, MIT, 2004.
    • (2004) Technical Report
    • Torralba, A.1    Murphy, K.2    Freeman, W.3
  • 22
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time object detection
    • P. Viola and M. Jones. Robust real-time object detection. Intl. J. Computer Vision, 57(2):137-154, 2004.
    • (2004) Intl. J. Computer Vision , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.