메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2183-2190

Face detection using SURF cascade

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCE TEST; FACE DETECTOR; HAAR FEATURES; LARGE-SCALE DATABASE; ON CURRENTS; PROCESSING SPEED; STATE-OF-THE-ART ALGORITHMS;

EID: 84863058528     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2011.6130518     Document Type: Conference Paper
Times cited : (109)

References (37)
  • 2
    • 24644457809 scopus 로고    scopus 로고
    • Robust object detection via soft cascade
    • L. Bourdev and J. Brandt. Robust object detection via soft cascade. In CVPR, 2005.
    • (2005) CVPR
    • Bourdev, L.1    Brandt, J.2
  • 3
    • 39749155821 scopus 로고    scopus 로고
    • On the design of cascades of boosted ensembles for face detection
    • S. C. Brubaker, J. Wu, J. Sun, M. D. Mullin, and J. Rehg. On the design of cascades of boosted ensembles for face detection. IJCV, 2008.
    • (2008) IJCV
    • Brubaker, S.C.1    Wu, J.2    Sun, J.3    Mullin, M.D.4    Rehg, J.5
  • 4
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 6
    • 26944454497 scopus 로고    scopus 로고
    • Roc graphs: Notes and practical considerations for researchers
    • T. Fawcett. Roc graphs: Notes and practical considerations for researchers. Machine Learning, 2004.
    • (2004) Machine Learning
    • Fawcett, T.1
  • 7
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In CVPR workshop on Generative-Model Based Vision, 2004.
    • (2004) CVPR Workshop on Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 8
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.
    • (2008) CVPR
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 9
    • 77955999401 scopus 로고    scopus 로고
    • Cascade object detection with deformable part models
    • P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object detection with deformable part models. In CVPR, 2010.
    • (2010) CVPR
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3
  • 10
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, 61(1):55-79, 2005.
    • (2005) IJCV , vol.61 , Issue.1 , pp. 55-79
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 11
    • 33750797981 scopus 로고    scopus 로고
    • Learning sparse features in granular space formulti-view face detection
    • C. Huang, H. Ai, Y. Li, and S. Lao. Learning sparse features in granular space formulti-view face detection. In AFGR, 2006.
    • (2006) AFGR
    • Huang, C.1    Ai, H.2    Li, Y.3    Lao, S.4
  • 12
    • 79959999198 scopus 로고    scopus 로고
    • Fddb: A benchmark for face detection in unconstrained settings
    • University of Massachusetts, Amherst
    • V. Jain and E. Learned-Miller. Fddb: A benchmark for face detection in unconstrained settings. Technical Report UMCS-2010-009, University of Massachusetts, Amherst, 2010.
    • (2010) Technical Report UMCS-2010-009
    • Jain, V.1    Learned-Miller, E.2
  • 13
    • 77951193770 scopus 로고    scopus 로고
    • Facetracer: A search engine for large collections of images with faces
    • N. Kumar, P. N. Belhumeur, and S. K. Nayar. Facetracer: A search engine for large collections of images with faces. In ECCV, 2008.
    • (2008) ECCV
    • Kumar, N.1    Belhumeur, P.N.2    Nayar, S.K.3
  • 14
    • 84898025694 scopus 로고    scopus 로고
    • Improvements of object detection using boosted histograms
    • I. Laptev. Improvements of object detection using boosted histograms. In bMVC, 2005.
    • (2005) BMVC
    • Laptev, I.1
  • 15
    • 84992377289 scopus 로고    scopus 로고
    • Floatboost learning for classification
    • S. Li, Z. Zhang, and et al. Floatboost learning for classification. In NIPS, 2002.
    • (2002) NIPS
    • Li, S.1    Zhang, Z.2
  • 16
    • 17744406666 scopus 로고    scopus 로고
    • An extended set of haar-like features for rapid object detection
    • R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object detection. In ICIP, 2002.
    • (2002) ICIP
    • Lienhart, R.1    Maydt, J.2
  • 17
    • 85029368260 scopus 로고    scopus 로고
    • Boosting the area under the roc curve
    • P. Long and R. Servedio. Boosting the area under the roc curve. In NIPS, 2007.
    • (2007) NIPS
    • Long, P.1    Servedio, R.2
  • 18
    • 77953184603 scopus 로고    scopus 로고
    • Max-margin additive classifiers for detection
    • S. Maji and A. C. Berg. Max-margin additive classifiers for detection. In ICCV, 2009.
    • (2009) ICCV
    • Maji, S.1    Berg, A.C.2
  • 20
    • 24644521635 scopus 로고    scopus 로고
    • Human detection based on a probabilistic assembly of robust part detectors
    • K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a probabilistic assembly of robust part detectors. In ECCV, 2004.
    • (2004) ECCV
    • Mikolajczyk, K.1    Schmid, C.2    Zisserman, A.3
  • 22
    • 33745928468 scopus 로고    scopus 로고
    • Joint haar-like features for face detection
    • T. Mita, T. Kaneko, and O. Hori. Joint haar-like features for face detection. In ICCV, 2005.
    • (2005) ICCV
    • Mita, T.1    Kaneko, T.2    Hori, O.3
  • 23
    • 50549099244 scopus 로고    scopus 로고
    • Fast training and selection of haar features during statistics in boosting-based face detection
    • M.-T. Pham and T.-J. Cham. Fast training and selection of haar features during statistics in boosting-based face detection. In ICCV, 2007.
    • (2007) ICCV
    • Pham, M.-T.1    Cham, T.-J.2
  • 24
    • 77956008540 scopus 로고    scopus 로고
    • Fast polygonal integration and its application in extending haarlike features to improve object detection
    • M.-T. Pham, Y. Gao, V. D. Hoang, and T.-J. Cham. Fast polygonal integration and its application in extending haarlike features to improve object detection. In CVPR, 2010.
    • (2010) CVPR
    • Pham, M.-T.1    Gao, Y.2    Hoang, V.D.3    Cham, T.-J.4
  • 25
    • 84863014884 scopus 로고    scopus 로고
    • Lacboost and fisherboost: Optimally building cascade classifiers
    • C. Shen, P. Wang, and H. Li. Lacboost and fisherboost: optimally building cascade classifiers. In ECCV, 2010.
    • (2010) ECCV
    • Shen, C.1    Wang, P.2    Li, H.3
  • 26
    • 24644524727 scopus 로고    scopus 로고
    • Waldboost-learning for time constrained sequential detection
    • J. Sochman and J. Matas. Waldboost-learning for time constrained sequential detection. In CVPR, 2005.
    • (2005) CVPR
    • Sochman, J.1    Matas, J.2
  • 27
    • 52049123532 scopus 로고    scopus 로고
    • Forsyth. Utility data annotation with amazon mechanical turk
    • A. Sorokin and D. A. Forsyth. Utility data annotation with amazon mechanical turk. In First Internet Vision Workshop, 2008.
    • (2008) First Internet Vision Workshop
    • Sorokin, A.1
  • 28
    • 33748781681 scopus 로고    scopus 로고
    • Region covariance: A fast descriptor for detection and classification
    • O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and classification. In ECCV, 2006.
    • (2006) ECCV
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 29
    • 84863014881 scopus 로고    scopus 로고
    • The MPLab GENKI Database
    • http://mplab. ucsd. edu. The MPLab GENKI Database.
  • 32
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001.
    • (2001) CVPR
    • Viola, P.1    Jones, M.2
  • 33
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • P. Viola and M. Jones. Robust real-time face detection. IJCV, 57(2):137-154, 2004.
    • (2004) IJCV , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.2
  • 34
    • 0035440673 scopus 로고    scopus 로고
    • Simplicity: Semanticssensitive integrated matching for picture libraries
    • J. Z. Wang, J. Li, and G. Wiederhold. Simplicity: Semanticssensitive integrated matching for picture libraries. IEEE TPAMI, 23(9):947-963, 2001.
    • (2001) IEEE TPAMI , vol.23 , Issue.9 , pp. 947-963
    • Wang, J.Z.1    Li, J.2    Wiederhold, G.3
  • 35
    • 50649097719 scopus 로고    scopus 로고
    • Dynamic cascades for face detection
    • R. Xiao, H. Zhu, H. Sun, and X. Tang. Dynamic cascades for face detection. In ICCV, 2007.
    • (2007) ICCV
    • Xiao, R.1    Zhu, H.2    Sun, H.3    Tang, X.4
  • 36
    • 79958159616 scopus 로고    scopus 로고
    • A survey of recent advances in face detection
    • Microsoft Research
    • C. Zhang and Z. Zhang. A survey of recent advances in face detection. Technical Report MSR-TR-2010-66, Microsoft Research, 2010.
    • (2010) Technical Report MSR-TR-2010-66
    • Zhang, C.1    Zhang, Z.2
  • 37
    • 33845597667 scopus 로고    scopus 로고
    • Fast human detection using a cascade of histograms of oriented gradients
    • Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng. Fast human detection using a cascade of histograms of oriented gradients. In CVPR, 2006.
    • (2006) CVPR
    • Zhu, Q.1    Avidan, S.2    Yeh, M.-C.3    Cheng, K.-T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.