메뉴 건너뛰기




Volumn 156, Issue , 2015, Pages 174-184

Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives

Author keywords

Biohydrogen production; Dark fermentation; E. coli and other bacteria; Glycerol; Hydrogenases

Indexed keywords

BIOTECHNOLOGY; BYPRODUCTS; CARBON; ESCHERICHIA COLI; FERMENTATION; GLUCOSE; GLYCEROL; ORGANIC CARBON; WASTE UTILIZATION;

EID: 84937154742     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2015.07.009     Document Type: Review
Times cited : (80)

References (120)
  • 1
    • 84864653119 scopus 로고    scopus 로고
    • Microbial conversion of glycerol: present status and future prospects
    • Khanna S., Goyal A., Moholkar V.S. Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 2012, 32:232-265.
    • (2012) Crit Rev Biotechnol , vol.32 , pp. 232-265
    • Khanna, S.1    Goyal, A.2    Moholkar, V.S.3
  • 2
    • 84923367677 scopus 로고    scopus 로고
    • Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology
    • Trchounian A. Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit Rev Biotechnol 2015, 35:103-113.
    • (2015) Crit Rev Biotechnol , vol.35 , pp. 103-113
    • Trchounian, A.1
  • 3
    • 84928468821 scopus 로고    scopus 로고
    • Automotive hydrogen fuelling stations: an international review
    • Alazemi J., Ansdrews J. Automotive hydrogen fuelling stations: an international review. Renew Sustain Energy Rev 2015, 48:483-499.
    • (2015) Renew Sustain Energy Rev , vol.48 , pp. 483-499
    • Alazemi, J.1    Ansdrews, J.2
  • 4
    • 15944404697 scopus 로고    scopus 로고
    • Into the hydrogen energy economy - milestones
    • Winter C.J. Into the hydrogen energy economy - milestones. Int J Hydrogen Energy 2005, 30:681-685.
    • (2005) Int J Hydrogen Energy , vol.30 , pp. 681-685
    • Winter, C.J.1
  • 5
    • 84937147611 scopus 로고    scopus 로고
    • Clean hydrogen fuel created with sunlight and water in new method. [accessed 05.08.13].
    • Shubber K. Clean hydrogen fuel created with sunlight and water in new method. [accessed 05.08.13]. http://www.wired.co.uk/news/archive/2013-08/05/hydrogen-gas-solar-reactor.
    • Shubber, K.1
  • 6
    • 85026683600 scopus 로고    scopus 로고
    • Introduction
    • Godula-Jopek A editor. Hydrogen Production by Electrolysis. Wiley-C-VCH Verlag GmbH & Co.
    • Godula-Jopek A. Introduction. In: Godula-Jopek A editor. Hydrogen Production by Electrolysis. Wiley-C-VCH Verlag GmbH & Co. 2015. p. 1-33.
    • (2015) , pp. 1-33
    • Godula-Jopek, A.1
  • 7
    • 67650740864 scopus 로고    scopus 로고
    • Fermentative hydrogen production: principles, progress, and prognosis
    • Hallenbeck P.C. Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energy 2009, 34:7379-7389.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 7379-7389
    • Hallenbeck, P.C.1
  • 8
    • 77953564075 scopus 로고    scopus 로고
    • Metabolic engineering to enhance bacterial hydrogen production
    • Maeda T., Sanchez-Torres V., Wood T.K. Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 2008, 1:30-39.
    • (2008) Microb Biotechnol , vol.1 , pp. 30-39
    • Maeda, T.1    Sanchez-Torres, V.2    Wood, T.K.3
  • 10
    • 84937123026 scopus 로고    scopus 로고
    • Fermentation
    • Neidhardt, FG, editor-in-Chief. Cellular and Molecular Biology. ASM Press: Washington DC.
    • Bock A, Sawers G. Fermentation. In: Neidhardt, FG, editor-in-Chief. Escherichia coli and Salmonella. Cellular and Molecular Biology. ASM Press: Washington DC, 2006. http://www.ecosal.org.
    • (2006) Escherichia coli and Salmonella.
    • Bock, A.1    Sawers, G.2
  • 11
    • 84922463707 scopus 로고    scopus 로고
    • A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products
    • Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P.N.L., et al. A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 2015, 144:73-95.
    • (2015) Appl Energy , vol.144 , pp. 73-95
    • Ghimire, A.1    Frunzo, L.2    Pirozzi, F.3    Trably, E.4    Escudie, R.5    Lens, P.N.L.6
  • 12
    • 84923539842 scopus 로고    scopus 로고
    • Strategies for improvement of biohydrogen production from organic-rich wastewater: a review
    • Arimi M.M., Knodel J., Kiprop A., Namango S.S., Zhang Y., Geiben S.-U. Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy 2015, 75:101-118.
    • (2015) Biomass Bioenergy , vol.75 , pp. 101-118
    • Arimi, M.M.1    Knodel, J.2    Kiprop, A.3    Namango, S.S.4    Zhang, Y.5    Geiben, S.-U.6
  • 13
    • 33746868000 scopus 로고    scopus 로고
    • Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering
    • Dharmadi Y., Murarka A., Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioengineer 2006, 94:821-829.
    • (2006) Biotechnol Bioengineer , vol.94 , pp. 821-829
    • Dharmadi, Y.1    Murarka, A.2    Gonzalez, R.3
  • 14
    • 71549150951 scopus 로고    scopus 로고
    • 2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH
    • 2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrogen Energy 2009, 34:8839-8845.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 8839-8845
    • Trchounian, K.1    Trchounian, A.2
  • 15
    • 84871673203 scopus 로고    scopus 로고
    • Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals
    • Clomburg J.M., Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 2013, 31:20-28.
    • (2013) Trends Biotechnol , vol.31 , pp. 20-28
    • Clomburg, J.M.1    Gonzalez, R.2
  • 16
    • 0017343370 scopus 로고
    • Energy conservation in chemotropic anaerobic bacteria
    • Thauer R.K., Kaster A.K., Goenrich M. Energy conservation in chemotropic anaerobic bacteria. Bacteriol Rev 1977, 41:100-180.
    • (1977) Bacteriol Rev , vol.41 , pp. 100-180
    • Thauer, R.K.1    Kaster, A.K.2    Goenrich, M.3
  • 17
    • 84857585600 scopus 로고    scopus 로고
    • Hydrogen via steam reforming of liquid biofeedstock
    • Nahar G., Dupont V. Hydrogen via steam reforming of liquid biofeedstock. Biofuels 2012, 3:167-191.
    • (2012) Biofuels , vol.3 , pp. 167-191
    • Nahar, G.1    Dupont, V.2
  • 18
    • 39649103644 scopus 로고    scopus 로고
    • Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals
    • Murarka A., Dharmadi Y., Yazdani S.S., Gonzalez R. Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 2008, 74:1124-1135.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 1124-1135
    • Murarka, A.1    Dharmadi, Y.2    Yazdani, S.S.3    Gonzalez, R.4
  • 21
    • 84865803086 scopus 로고    scopus 로고
    • Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol
    • Ganesh I., Ravikumar S., Hong S.H. Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotechnol Bioproc Engineer 2012, 17:671-678.
    • (2012) Biotechnol Bioproc Engineer , vol.17 , pp. 671-678
    • Ganesh, I.1    Ravikumar, S.2    Hong, S.H.3
  • 22
    • 84871622059 scopus 로고    scopus 로고
    • Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs
    • Poladyan A., Avagyan A., Vassilian A., Trchounian A. Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs. Curr Microbiol 2013, 66:49-55.
    • (2013) Curr Microbiol , vol.66 , pp. 49-55
    • Poladyan, A.1    Avagyan, A.2    Vassilian, A.3    Trchounian, A.4
  • 23
    • 84893508699 scopus 로고    scopus 로고
    • Enhanced production of 3-hydroxy-propionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli
    • Kim K., Kim S.K., Park Y.C., Seo J.H. Enhanced production of 3-hydroxy-propionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 2014, 156:170-175.
    • (2014) Bioresour Technol , vol.156 , pp. 170-175
    • Kim, K.1    Kim, S.K.2    Park, Y.C.3    Seo, J.H.4
  • 24
    • 33746867314 scopus 로고    scopus 로고
    • Glycerol and methylglyoxal metabolism.
    • Neidhardt, FG, editor-in-Chief, Cellular and Molecular Biology. ASM Press: Washington DC.
    • Booth IR. Glycerol and methylglyoxal metabolism. In: Neidhardt, FG, editor-in-Chief, EcoSal - Escherichia coli and Salmonella. Cellular and Molecular Biology. ASM Press: Washington DC, 2006. http://www.ecosal.org.
    • (2006) EcoSal - Escherichia coli and Salmonella.
    • Booth, I.R.1
  • 27
    • 24644459850 scopus 로고    scopus 로고
    • Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate
    • Mnatsakanyan N., Bagramyan K., Trchounian A. Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate. Cell Biochem Biophys 2004, 41:357-365.
    • (2004) Cell Biochem Biophys , vol.41 , pp. 357-365
    • Mnatsakanyan, N.1    Bagramyan, K.2    Trchounian, A.3
  • 28
    • 83055176774 scopus 로고    scopus 로고
    • Application of Plackett-Burman experimental design to optimize biohydrogen fermentation by E. coli (XL1-BLUE)
    • Bakonyi P., Nemestóthy N., Lövitusz É., Bélafi-Bakó K. Application of Plackett-Burman experimental design to optimize biohydrogen fermentation by E. coli (XL1-BLUE). Int J Hydrogen Energy 2011, 36:13949-13954.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 13949-13954
    • Bakonyi, P.1    Nemestóthy, N.2    Lövitusz, É.3    Bélafi-Bakó, K.4
  • 30
    • 0742286265 scopus 로고    scopus 로고
    • Structure and functioning of formate hydrogen lyase, key enzyme of mixed-acid fermentation
    • Bagramyan K., Trchounian A. Structure and functioning of formate hydrogen lyase, key enzyme of mixed-acid fermentation. Biochemistry (Moscow) 2003, 68:1159-1170.
    • (2003) Biochemistry (Moscow) , vol.68 , pp. 1159-1170
    • Bagramyan, K.1    Trchounian, A.2
  • 31
    • 84893732702 scopus 로고    scopus 로고
    • Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force?
    • Trchounian A., Sawers R.G. Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force?. IUBMB Life 2014, 66:1-7.
    • (2014) IUBMB Life , vol.66 , pp. 1-7
    • Trchounian, A.1    Sawers, R.G.2
  • 32
    • 36749100610 scopus 로고    scopus 로고
    • Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production
    • Redwood M.D., Mikheenko I.P., Sargent F., Macaskie L.E. Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 2008, 278:48-55.
    • (2008) FEMS Microbiol Lett , vol.278 , pp. 48-55
    • Redwood, M.D.1    Mikheenko, I.P.2    Sargent, F.3    Macaskie, L.E.4
  • 33
    • 77950503486 scopus 로고    scopus 로고
    • How Escherichia coli is equipped to oxidize hydrogen under different redox conditions
    • Lukey M.J., Parkin A., Roessler M.M., Murphy B.J., Harmer J., Palmer T., et al. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 2010, 285:3928-3938.
    • (2010) J Biol Chem , vol.285 , pp. 3928-3938
    • Lukey, M.J.1    Parkin, A.2    Roessler, M.M.3    Murphy, B.J.4    Harmer, J.5    Palmer, T.6
  • 35
    • 84886410850 scopus 로고    scopus 로고
    • Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH
    • Poladyan A., Trchounian K., Sawers G., Trchounian A. Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiol Lett 2013, 348:143-148.
    • (2013) FEMS Microbiol Lett , vol.348 , pp. 143-148
    • Poladyan, A.1    Trchounian, K.2    Sawers, G.3    Trchounian, A.4
  • 36
    • 0025914936 scopus 로고
    • Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1
    • Menon N.K., Robbins J., Wendt J.C., Shanmugan K.T., Przybyla A.E. Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 1991, 173:4851-4861.
    • (1991) J Bacteriol , vol.173 , pp. 4851-4861
    • Menon, N.K.1    Robbins, J.2    Wendt, J.C.3    Shanmugan, K.T.4    Przybyla, A.E.5
  • 37
    • 0028308306 scopus 로고
    • Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2
    • Menon N.K., Chatelus C.Y., Dervartanian M., Wendt J.C., Shanmugam K.T., Peck H.D., et al. Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 1994, 176:4416-4423.
    • (1994) J Bacteriol , vol.176 , pp. 4416-4423
    • Menon, N.K.1    Chatelus, C.Y.2    Dervartanian, M.3    Wendt, J.C.4    Shanmugam, K.T.5    Peck, H.D.6
  • 38
    • 0026725149 scopus 로고
    • Mutational analysis of the operon (hyc) determing hydrogenase 3 formation in Escherichia coli
    • Sauter M., Bohm R., Bock A. Mutational analysis of the operon (hyc) determing hydrogenase 3 formation in Escherichia coli. Mol Microbiol 1992, 6:1523-1532.
    • (1992) Mol Microbiol , vol.6 , pp. 1523-1532
    • Sauter, M.1    Bohm, R.2    Bock, A.3
  • 39
    • 0030725104 scopus 로고    scopus 로고
    • A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system
    • Andrews S.C., Berks B.C., Mcclay J., Ambler A., Quail M.A., Golby P., et al. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 1997, 143:3633-3647.
    • (1997) Microbiology , vol.143 , pp. 3633-3647
    • Andrews, S.C.1    Berks, B.C.2    Mcclay, J.3    Ambler, A.4    Quail, M.A.5    Golby, P.6
  • 40
    • 0032873183 scopus 로고    scopus 로고
    • Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [Ni-Fe] hydrogenases 1 and 2 of Escherichia coli
    • Richard D.J., Sawers G., Sargent F., McWalter L., Boxer D.H. Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [Ni-Fe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 1999, 145:2903-2912.
    • (1999) Microbiology , vol.145 , pp. 2903-2912
    • Richard, D.J.1    Sawers, G.2    Sargent, F.3    McWalter, L.4    Boxer, D.H.5
  • 41
    • 0036304751 scopus 로고    scopus 로고
    • Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF
    • Hube M., Blokesch M., Bock A. Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 2002, 184:3879-3885.
    • (2002) J Bacteriol , vol.184 , pp. 3879-3885
    • Hube, M.1    Blokesch, M.2    Bock, A.3
  • 42
    • 84864507541 scopus 로고    scopus 로고
    • Transcriptional control of hydrogen production during mixed carbon fermentation by hydrogenases 4 (hyf) and 3 (hyc) in Escherichia coli
    • Trchounian K. Transcriptional control of hydrogen production during mixed carbon fermentation by hydrogenases 4 (hyf) and 3 (hyc) in Escherichia coli. Gene 2012, 506:156-160.
    • (2012) Gene , vol.506 , pp. 156-160
    • Trchounian, K.1
  • 45
    • 84875216800 scopus 로고    scopus 로고
    • 2 production during mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5
    • 2 production during mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5. Int J Hydrogen Energy 2013, 38:3919-3927.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 3919-3927
    • Trchounian, K.1    Trchounian, A.2
  • 48
    • 84857036850 scopus 로고    scopus 로고
    • 1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli
    • 1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. J Bioenerg Biomembr 2011, 43:645-650.
    • (2011) J Bioenerg Biomembr , vol.43 , pp. 645-650
    • Trchounian, K.1    Pinske, C.2    Sawers, R.G.3    Trchounian, A.4
  • 49
    • 1342324078 scopus 로고    scopus 로고
    • 1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation
    • 1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem Biophys Res Comm 2004, 315:1051-1057.
    • (2004) Biochem Biophys Res Comm , vol.315 , pp. 1051-1057
    • Trchounian, A.1
  • 50
    • 84878632648 scopus 로고    scopus 로고
    • Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation
    • Trchounian K., Blbulyan S., Trchounian A. Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation. J Bioenerg Biomembr 2013, 45:253-260.
    • (2013) J Bioenerg Biomembr , vol.45 , pp. 253-260
    • Trchounian, K.1    Blbulyan, S.2    Trchounian, A.3
  • 51
    • 84930957135 scopus 로고    scopus 로고
    • Clean energy technology development: hydrogen production by Escherichia coli during glycerol fermentation.
    • Dincer I, Colpan CO, Kizilkan O, et al., editor. Proceedings of the 13th International Conference on Clean Energy, Istanbul (Turkey)
    • Trchounian K, Trchounian A. Clean energy technology development: hydrogen production by Escherichia coli during glycerol fermentation. In: Dincer I, Colpan CO, Kizilkan O, et al., editor. Proceedings of the 13th International Conference on Clean Energy, Istanbul (Turkey), 2014. p. 1322-8.
    • (2014) , pp. 1322-1328
    • Trchounian, K.1    Trchounian, A.2
  • 52
    • 84930944252 scopus 로고    scopus 로고
    • Impact of membrane-associated hydrogenases on the FoF1-ATPase in Escherichia coli during glycerol and mixed carbon fermentation: atpase activity and its inhibition by N, N'-dicyclohexylcarbodiimide in the mutants lacking hydrogenases
    • Blbulyan S., Trchounian A. Impact of membrane-associated hydrogenases on the FoF1-ATPase in Escherichia coli during glycerol and mixed carbon fermentation: atpase activity and its inhibition by N, N'-dicyclohexylcarbodiimide in the mutants lacking hydrogenases. Arch Biochem Biophys 2015, 579:67-72.
    • (2015) Arch Biochem Biophys , vol.579 , pp. 67-72
    • Blbulyan, S.1    Trchounian, A.2
  • 53
    • 0023047645 scopus 로고
    • Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites
    • Pettigrew D.W. Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites. Biochemistry 1986, 25:4711-4718.
    • (1986) Biochemistry , vol.25 , pp. 4711-4718
    • Pettigrew, D.W.1
  • 54
    • 84866740955 scopus 로고    scopus 로고
    • 1-ATPase with bio-hydrogen production activity of Rhodobacter sphaeroides: effects of diphenylene iodonium, hydrogenase inhibitor, and its solvent dimethylsulphoxide
    • 1-ATPase with bio-hydrogen production activity of Rhodobacter sphaeroides: effects of diphenylene iodonium, hydrogenase inhibitor, and its solvent dimethylsulphoxide. J Bioenerg Biomembr 2012, 44:495-502.
    • (2012) J Bioenerg Biomembr , vol.44 , pp. 495-502
    • Hakobyan, L.1    Gabrielyan, L.2    Trchounian, A.3
  • 55
    • 84886308686 scopus 로고    scopus 로고
    • Escherichia coli multiple [Ni-Fe]-hydrogenases are sensitive to osmotic stress during glycerol fermentation but at different pHs
    • Trchounian K., Trchounian A. Escherichia coli multiple [Ni-Fe]-hydrogenases are sensitive to osmotic stress during glycerol fermentation but at different pHs. FEBS Lett 2013, 587:3562-3566.
    • (2013) FEBS Lett , vol.587 , pp. 3562-3566
    • Trchounian, K.1    Trchounian, A.2
  • 57
    • 84897393788 scopus 로고    scopus 로고
    • Hydrogen production by Escherichia coli depends on glucose concentration and its combination with glycerol at different pHs
    • Trchounian K., Sargsyan H., Trchounian A. Hydrogen production by Escherichia coli depends on glucose concentration and its combination with glycerol at different pHs. Int J Hydrogen Energy 2014, 39:6419-6423.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 6419-6423
    • Trchounian, K.1    Sargsyan, H.2    Trchounian, A.3
  • 58
    • 84903454473 scopus 로고    scopus 로고
    • Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers
    • Gabrielyan L., Sargsyan H., Hakobyan L., Trchounian A. Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers. Appl Energy 2014, 131:20-25.
    • (2014) Appl Energy , vol.131 , pp. 20-25
    • Gabrielyan, L.1    Sargsyan, H.2    Hakobyan, L.3    Trchounian, A.4
  • 59
    • 0020744295 scopus 로고
    • An electrochemical cell for reduction of biochemical: its application to the study of the effect pf pH and redox potential on the activity of hydrogenases
    • Fernandez V.M. An electrochemical cell for reduction of biochemical: its application to the study of the effect pf pH and redox potential on the activity of hydrogenases. Anal Biochem 1983, 130:54-59.
    • (1983) Anal Biochem , vol.130 , pp. 54-59
    • Fernandez, V.M.1
  • 60
    • 77956600423 scopus 로고    scopus 로고
    • Hydrogen production by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus
    • Eltsova Z.A., Vasilieva L.G., Tsygankov A.A. Hydrogen production by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus. Appl Biochem Microbiol 2010, 46:487-491.
    • (2010) Appl Biochem Microbiol , vol.46 , pp. 487-491
    • Eltsova, Z.A.1    Vasilieva, L.G.2    Tsygankov, A.A.3
  • 63
    • 0024556830 scopus 로고
    • Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy
    • Bagramyan K.A., Martirosov S.M. Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy. FEBS Lett 1989, 249:149-152.
    • (1989) FEBS Lett , vol.249 , pp. 149-152
    • Bagramyan, K.A.1    Martirosov, S.M.2
  • 64
    • 42149127801 scopus 로고    scopus 로고
    • Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli
    • Maeda T., Wood T.K. Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli. Int J Hydrogen Energy 2008, 33:2409-2412.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 2409-2412
    • Maeda, T.1    Wood, T.K.2
  • 65
    • 0021138992 scopus 로고
    • Anaerobiosis, formate, nitrate, and pyrA are involved in the regulation of formate hydrogenlyase in Salmonella typhimurium
    • Barrett E.L., Kwan H.S., Macy J. Anaerobiosis, formate, nitrate, and pyrA are involved in the regulation of formate hydrogenlyase in Salmonella typhimurium. J Bacteriol 1984, 158:972-977.
    • (1984) J Bacteriol , vol.158 , pp. 972-977
    • Barrett, E.L.1    Kwan, H.S.2    Macy, J.3
  • 66
    • 84857206674 scopus 로고    scopus 로고
    • Hydrogen production by recombinantEscherichia coli strains
    • Maeda T., Sanchez-Torres V., Wood T.K. Hydrogen production by recombinantEscherichia coli strains. Microb Biotechnol 2012, 5:214-225.
    • (2012) Microb Biotechnol , vol.5 , pp. 214-225
    • Maeda, T.1    Sanchez-Torres, V.2    Wood, T.K.3
  • 67
    • 72949091838 scopus 로고    scopus 로고
    • An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol
    • Hu H., Wood T.K. An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Comm 2010, 391:1033-1038.
    • (2010) Biochem Biophys Res Comm , vol.391 , pp. 1033-1038
    • Hu, H.1    Wood, T.K.2
  • 68
    • 84900808181 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol
    • Tran K.T., Maeda M., Wood T.K. Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 2014, 98:4757-4770.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 4757-4770
    • Tran, K.T.1    Maeda, M.2    Wood, T.K.3
  • 69
    • 84925534876 scopus 로고    scopus 로고
    • Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol
    • Tran K.T., Maeda T., Sanchez-Torres V., Wood T.K. Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol. Appl Microbiol Biotechnol 2015, 99:2573-2581.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 2573-2581
    • Tran, K.T.1    Maeda, T.2    Sanchez-Torres, V.3    Wood, T.K.4
  • 70
    • 32044471535 scopus 로고    scopus 로고
    • Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli
    • Yoshida A., Nishimura T., Kawagushi H., Inui M., Yukawa H. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli. Appl Env Microbiol 2005, 71:6762-6768.
    • (2005) Appl Env Microbiol , vol.71 , pp. 6762-6768
    • Yoshida, A.1    Nishimura, T.2    Kawagushi, H.3    Inui, M.4    Yukawa, H.5
  • 71
    • 84928485570 scopus 로고    scopus 로고
    • High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling
    • Rollin J.A., del Campo J.M., Myung S., Sun F., You C., Bakovic A., et al. High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Nat Acad Sci USA 2015, 112:4964-4969.
    • (2015) Proc Nat Acad Sci USA , vol.112 , pp. 4964-4969
    • Rollin, J.A.1    del Campo, J.M.2    Myung, S.3    Sun, F.4    You, C.5    Bakovic, A.6
  • 72
    • 84907158615 scopus 로고    scopus 로고
    • Comparison of glucose, glycerol and crude glycerol fermentation by Escherichia coli K12
    • Chaudhary N., Ngadi M.O., Simpson B. Comparison of glucose, glycerol and crude glycerol fermentation by Escherichia coli K12. J Bioprocess Biotecniq 2012, S1:001.
    • (2012) J Bioprocess Biotecniq , vol.S1 , pp. 001
    • Chaudhary, N.1    Ngadi, M.O.2    Simpson, B.3
  • 73
    • 0025031657 scopus 로고
    • Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli
    • Schlensog V., Bock A. Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol 1990, 4:1319-1327.
    • (1990) Mol Microbiol , vol.4 , pp. 1319-1327
    • Schlensog, V.1    Bock, A.2
  • 75
    • 84929076470 scopus 로고    scopus 로고
    • Escherichia coli hydrogen gas production from glycerol: effects of external formate
    • Trchounian K., Trchounian A. Escherichia coli hydrogen gas production from glycerol: effects of external formate. Renew Energy 2015, 83:345-351.
    • (2015) Renew Energy , vol.83 , pp. 345-351
    • Trchounian, K.1    Trchounian, A.2
  • 76
    • 84937156762 scopus 로고    scopus 로고
    • Escherichia coli growth and hydrogen production in batch culture upon formate alone and with glycerol co-fermentation at different pHs
    • Trchounian K., Abrahamyan V., Poladyan A., Trchounian A. Escherichia coli growth and hydrogen production in batch culture upon formate alone and with glycerol co-fermentation at different pHs. Int J Hydrogen Energy 2015, 10.1016/j.ijhydene.2015.06.087.
    • (2015) Int J Hydrogen Energy
    • Trchounian, K.1    Abrahamyan, V.2    Poladyan, A.3    Trchounian, A.4
  • 77
    • 34248333429 scopus 로고    scopus 로고
    • Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae
    • Liu F., Fang B. Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae. Biotechnol J 2007, 2:374-380.
    • (2007) Biotechnol J , vol.2 , pp. 374-380
    • Liu, F.1    Fang, B.2
  • 78
    • 77955176908 scopus 로고    scopus 로고
    • Hydrogen production from glycerol using halophilic fermentative bacteria
    • Kivisto A., Santala V., Karp M. Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour Technol 2010, 101:8671-8677.
    • (2010) Bioresour Technol , vol.101 , pp. 8671-8677
    • Kivisto, A.1    Santala, V.2    Karp, M.3
  • 79
    • 84873282363 scopus 로고    scopus 로고
    • Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter sp
    • Maru B.T., Constanti M., Stchigel A.M., Medina F., Sueiras J.E. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter sp. Biotechnol Prog 2013, 29:31-38.
    • (2013) Biotechnol Prog , vol.29 , pp. 31-38
    • Maru, B.T.1    Constanti, M.2    Stchigel, A.M.3    Medina, F.4    Sueiras, J.E.5
  • 80
    • 84855843354 scopus 로고    scopus 로고
    • Near stoichiometric reforming of biodiesel derived crude glycerol to hydrogen by photofermentation
    • Ghosh D., Tourigny A., Hallenbeck P.C. Near stoichiometric reforming of biodiesel derived crude glycerol to hydrogen by photofermentation. Int J Hydrogen Energy 2012, 37:2273-2277.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 2273-2277
    • Ghosh, D.1    Tourigny, A.2    Hallenbeck, P.C.3
  • 81
    • 84872394321 scopus 로고    scopus 로고
    • Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds
    • Pott R.W.M., Howe C.J., Dennis J.S. Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds. Bioresour Technol 2013, 130:725-730.
    • (2013) Bioresour Technol , vol.130 , pp. 725-730
    • Pott, R.W.M.1    Howe, C.J.2    Dennis, J.S.3
  • 82
    • 84937147556 scopus 로고    scopus 로고
    • Assessment of bio-hydrogen production from glycerol and glucose by fermentative bacteria
    • Dimanta I., Nikolaeva Y., Grunduls A., Muiznieks I., Kleperis J. Assessment of bio-hydrogen production from glycerol and glucose by fermentative bacteria. Energetika 2013, 59:124-128.
    • (2013) Energetika , vol.59 , pp. 124-128
    • Dimanta, I.1    Nikolaeva, Y.2    Grunduls, A.3    Muiznieks, I.4    Kleperis, J.5
  • 83
    • 84857452787 scopus 로고    scopus 로고
    • Hydrogen production from biodiesel by-product by immobilized Enterobacter aerogenes
    • Han J., Lee D., Cho J., Lee J., Kim S. Hydrogen production from biodiesel by-product by immobilized Enterobacter aerogenes. Bioproc Biosyst Engineer 2012, 35:151-157.
    • (2012) Bioproc Biosyst Engineer , vol.35 , pp. 151-157
    • Han, J.1    Lee, D.2    Cho, J.3    Lee, J.4    Kim, S.5
  • 84
    • 84878108003 scopus 로고    scopus 로고
    • Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate
    • Reungsang A., Sittijunda S., O-thong S. Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate. Int J Hydrogen Energy 2013, 38:6970-6979.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 6970-6979
    • Reungsang, A.1    Sittijunda, S.2    O-thong, S.3
  • 85
    • 84890432311 scopus 로고    scopus 로고
    • Statistical optimization of medium components affecting simultaneous fermentative hydrogen and ethanol production from crude glycerol by thermotolerant Klebsiella sp. TR17
    • Chookaew T., O-Thong S., Prasertsan P. Statistical optimization of medium components affecting simultaneous fermentative hydrogen and ethanol production from crude glycerol by thermotolerant Klebsiella sp. TR17. Int J Hydrogen Energy 2014, 39:751-760.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 751-760
    • Chookaew, T.1    O-Thong, S.2    Prasertsan, P.3
  • 86
    • 84887100832 scopus 로고    scopus 로고
    • Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria
    • Lo Y.C., Chen X.J., Yuan Y., Chang J.S. Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. Int J Hydrogen Energy 2013, 38:15815-15828.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 15815-15828
    • Lo, Y.C.1    Chen, X.J.2    Yuan, Y.3    Chang, J.S.4
  • 87
    • 84887085748 scopus 로고    scopus 로고
    • Hydrogen production from meat processing and restaurant waste derived crude glycerol by anaerobic fermentation and utilization of the spent broth
    • Sarma S.J., Brar S.K., Le Bihan Y., Buelna G., Soccol S.R. Hydrogen production from meat processing and restaurant waste derived crude glycerol by anaerobic fermentation and utilization of the spent broth. J Chem Technol Biotechnol 2013, 88:2264-2271.
    • (2013) J Chem Technol Biotechnol , vol.88 , pp. 2264-2271
    • Sarma, S.J.1    Brar, S.K.2    Le Bihan, Y.3    Buelna, G.4    Soccol, S.R.5
  • 88
    • 84923328005 scopus 로고    scopus 로고
    • Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis
    • Kumar P., Sharma R., Ray S., Mehariya S., Patel S.K., Lee J.K., et al. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 2015, 182:383-388.
    • (2015) Bioresour Technol , vol.182 , pp. 383-388
    • Kumar, P.1    Sharma, R.2    Ray, S.3    Mehariya, S.4    Patel, S.K.5    Lee, J.K.6
  • 89
    • 84910051633 scopus 로고    scopus 로고
    • Improved bioconversion of crude glycerol to hydrogen by statistical optimization of media components
    • Mangayil R., Aho T., Karp M., Santala V. Improved bioconversion of crude glycerol to hydrogen by statistical optimization of media components. Renew Energy 2015, 75:583-589.
    • (2015) Renew Energy , vol.75 , pp. 583-589
    • Mangayil, R.1    Aho, T.2    Karp, M.3    Santala, V.4
  • 90
    • 28744432513 scopus 로고    scopus 로고
    • Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process
    • Ito T., Nakashimada Y., Senba K., Matsui T., Nishio N. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 2005, 100:260-265.
    • (2005) J Biosci Bioeng , vol.100 , pp. 260-265
    • Ito, T.1    Nakashimada, Y.2    Senba, K.3    Matsui, T.4    Nishio, N.5
  • 91
    • 84986216912 scopus 로고    scopus 로고
    • Genome sequence of Halanaerobium saccharolyticum subsp. saccharolyticum strain DSM 6643T, a halophilic hydrogen-producing bacterium
    • e00187-13
    • Kivisto A., Largo A., Ciranna A., Sanrala V., Roos C., Karp M. Genome sequence of Halanaerobium saccharolyticum subsp. saccharolyticum strain DSM 6643T, a halophilic hydrogen-producing bacterium. Genome Announcements 2013, 1. e00187-13.
    • (2013) Genome Announcements , vol.1
    • Kivisto, A.1    Largo, A.2    Ciranna, A.3    Sanrala, V.4    Roos, C.5    Karp, M.6
  • 92
    • 84864094456 scopus 로고    scopus 로고
    • Optimization of selected salts concentration for improved biohydrogen production from biodiesel-based glycerol using Enterobacter aerogenes
    • Jitrwung R., Verrett J., Yargeau V. Optimization of selected salts concentration for improved biohydrogen production from biodiesel-based glycerol using Enterobacter aerogenes. Renew Energy 2013, 50:222-236.
    • (2013) Renew Energy , vol.50 , pp. 222-236
    • Jitrwung, R.1    Verrett, J.2    Yargeau, V.3
  • 93
    • 84926191612 scopus 로고    scopus 로고
    • Light-dark duration alternation effects on Rhodobacter sphaeroides growth, membrane properties and bio-hydrogen production in batch culture
    • Sargsyan H., Gabrielyan L., Hakobyan L., Trchounian A. Light-dark duration alternation effects on Rhodobacter sphaeroides growth, membrane properties and bio-hydrogen production in batch culture. Int J Hydrogen Energy 2015, 40:4084-4091.
    • (2015) Int J Hydrogen Energy , vol.40 , pp. 4084-4091
    • Sargsyan, H.1    Gabrielyan, L.2    Hakobyan, L.3    Trchounian, A.4
  • 94
    • 84865035675 scopus 로고    scopus 로고
    • Bioconversion of crude glycerol from biodiesel production to hydrogen
    • Mangahil R., Karp M., Santala V. Bioconversion of crude glycerol from biodiesel production to hydrogen. Int J Hydrogen Energy 2012, 37:12198-12204.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 12198-12204
    • Mangahil, R.1    Karp, M.2    Santala, V.3
  • 95
    • 84909942668 scopus 로고    scopus 로고
    • Hydrogen production in single chamber microbial electrolysis cells with different complex substrates
    • Montpart N., Rago L., Baeza J.A., Guisasola A. Hydrogen production in single chamber microbial electrolysis cells with different complex substrates. Water Res 2015, 68:601-605.
    • (2015) Water Res , vol.68 , pp. 601-605
    • Montpart, N.1    Rago, L.2    Baeza, J.A.3    Guisasola, A.4
  • 96
    • 84902275746 scopus 로고    scopus 로고
    • The maximum specific hydrogen producing activity of anaerobic mixed cultures: definition and determination
    • Mu Y., Yang H.-Y., Wang Y.-Z., He C.-H., Zhao Q.-B., Wang Y., et al. The maximum specific hydrogen producing activity of anaerobic mixed cultures: definition and determination. Sci Rep 2014, 4:5239.
    • (2014) Sci Rep , vol.4 , pp. 5239
    • Mu, Y.1    Yang, H.-Y.2    Wang, Y.-Z.3    He, C.-H.4    Zhao, Q.-B.5    Wang, Y.6
  • 98
    • 84940282119 scopus 로고    scopus 로고
    • Starch: a potential substrate for biohydrogen production
    • Vendruscolo F. Starch: a potential substrate for biohydrogen production. Int J Energy Res 2014, 39:293-302.
    • (2014) Int J Energy Res , vol.39 , pp. 293-302
    • Vendruscolo, F.1
  • 99
    • 84894084786 scopus 로고    scopus 로고
    • Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production
    • Marone A., Izzo G., Mentuccia L., Massini G., Paganin P., Rosa S., et al. Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 2014, 68:6-13.
    • (2014) Renew Energy , vol.68 , pp. 6-13
    • Marone, A.1    Izzo, G.2    Mentuccia, L.3    Massini, G.4    Paganin, P.5    Rosa, S.6
  • 100
    • 84894025416 scopus 로고    scopus 로고
    • Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp. FS3
    • Song Z.X., Li X.H., Li W.W., Bai Y.X., Fan Y.T., Hou H.W. Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp. FS3. Bioresour Technol 2014, 157:91-97.
    • (2014) Bioresour Technol , vol.157 , pp. 91-97
    • Song, Z.X.1    Li, X.H.2    Li, W.W.3    Bai, Y.X.4    Fan, Y.T.5    Hou, H.W.6
  • 101
    • 84892367011 scopus 로고    scopus 로고
    • Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria
    • Debowski M., Korzeniewska E., Filipkowska Z., Zieliński M., Kwiatkowski R. Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria. Int J Hydrogen Energy 2014, 39:1972-1978.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 1972-1978
    • Debowski, M.1    Korzeniewska, E.2    Filipkowska, Z.3    Zieliński, M.4    Kwiatkowski, R.5
  • 102
    • 30944443553 scopus 로고    scopus 로고
    • Biohydrogen production from waste materials
    • Kapdan I.K., Kargi F. Biohydrogen production from waste materials. Enzyme Microb Technol 2006, 38:569-582.
    • (2006) Enzyme Microb Technol , vol.38 , pp. 569-582
    • Kapdan, I.K.1    Kargi, F.2
  • 103
    • 84893810635 scopus 로고    scopus 로고
    • Characteristics of biohydrogen fermentation from various substrates
    • Choi J., Ahn Y. Characteristics of biohydrogen fermentation from various substrates. Int J Hydrogen Energy 2013, 39:3152-3159.
    • (2013) Int J Hydrogen Energy , vol.39 , pp. 3152-3159
    • Choi, J.1    Ahn, Y.2
  • 105
    • 79955465839 scopus 로고    scopus 로고
    • High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana
    • Ngo T.A., Kim M.S., Sim S.J. High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrogen Energy 2011, 36:5836-5842.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 5836-5842
    • Ngo, T.A.1    Kim, M.S.2    Sim, S.J.3
  • 106
    • 84862681207 scopus 로고    scopus 로고
    • Dark fermentation of hydrogen from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana
    • Ngo T.A., Sim S.J. Dark fermentation of hydrogen from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana. Environ Prog Sustain Energy 2012, 31:466-473.
    • (2012) Environ Prog Sustain Energy , vol.31 , pp. 466-473
    • Ngo, T.A.1    Sim, S.J.2
  • 107
    • 84876721929 scopus 로고    scopus 로고
    • Glycerol fermentation to hydrogen by Thermotoga maritima: proposed pathway and bioenergetic considerations
    • Maru B.T., Bielen A.A.M., Constanti M., Medina F., Kengen S.W.M. Glycerol fermentation to hydrogen by Thermotoga maritima: proposed pathway and bioenergetic considerations. Int J Hydrogen Energy 2013, 38:5563-5572.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 5563-5572
    • Maru, B.T.1    Bielen, A.A.M.2    Constanti, M.3    Medina, F.4    Kengen, S.W.M.5
  • 108
    • 0037934657 scopus 로고    scopus 로고
    • A simple energy-conserving system: proton reduction coupled to proton translocation
    • Sapra R., Bagramyan K., Adams M.W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 2003, 100:7545-7550.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 7545-7550
    • Sapra, R.1    Bagramyan, K.2    Adams, M.W.3
  • 109
    • 84880156860 scopus 로고    scopus 로고
    • Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes
    • Bakonyi P., Nemestóthy N., Bélafi-Bakó K. Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int J Hydrogen Energy 2013, 38:9673-9687.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 9673-9687
    • Bakonyi, P.1    Nemestóthy, N.2    Bélafi-Bakó, K.3
  • 112
    • 84937135553 scopus 로고    scopus 로고
    • The hydrogen permeability of Cu-Zr binary amorphous metallic membranes and the importance of thermal stability
    • Lai T., Yin H., Lind M.L. The hydrogen permeability of Cu-Zr binary amorphous metallic membranes and the importance of thermal stability. J Membr Sci 2015, 489:264-269.
    • (2015) J Membr Sci , vol.489 , pp. 264-269
    • Lai, T.1    Yin, H.2    Lind, M.L.3
  • 113
    • 84925649957 scopus 로고    scopus 로고
    • Hydrogen selective membranes: a review of palladium-based dense metal membranes
    • Al-Mufachi N.A., Rees N.V., Steinberger-Wilkens R. Hydrogen selective membranes: a review of palladium-based dense metal membranes. Renew Sustain Energy Rev 2015, 47:540-551.
    • (2015) Renew Sustain Energy Rev , vol.47 , pp. 540-551
    • Al-Mufachi, N.A.1    Rees, N.V.2    Steinberger-Wilkens, R.3
  • 114
    • 58649095930 scopus 로고    scopus 로고
    • Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future
    • Shao L., Low B.T., Chung T.S., Greenberg A.R. Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci 2009, 327:18-31.
    • (2009) J Membr Sci , vol.327 , pp. 18-31
    • Shao, L.1    Low, B.T.2    Chung, T.S.3    Greenberg, A.R.4
  • 115
    • 84937146205 scopus 로고    scopus 로고
    • Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review
    • Barca C., Soric A., Ranava D., Giudici-Orticoni M.T., Ferrasse J.H. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review. Bioresour Technol 2015, 185:386-398.
    • (2015) Bioresour Technol , vol.185 , pp. 386-398
    • Barca, C.1    Soric, A.2    Ranava, D.3    Giudici-Orticoni, M.T.4    Ferrasse, J.H.5
  • 116
    • 0036827184 scopus 로고    scopus 로고
    • Inhibition of hydrogen fermentation of organicwastes by lacticacid bacteria
    • Noike T., Takabatake H., Mizuno O., Ohba M. Inhibition of hydrogen fermentation of organicwastes by lacticacid bacteria. Int J Hydrogen Energy 2002, 27:1367-1371.
    • (2002) Int J Hydrogen Energy , vol.27 , pp. 1367-1371
    • Noike, T.1    Takabatake, H.2    Mizuno, O.3    Ohba, M.4
  • 118
    • 34548674731 scopus 로고    scopus 로고
    • Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities
    • Maeda T., Sanchez-Torres V., Wood T.K. Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 2008, 76:1036-1042.
    • (2008) Appl Microbiol Biotechnol , vol.76 , pp. 1036-1042
    • Maeda, T.1    Sanchez-Torres, V.2    Wood, T.K.3
  • 119
    • 84897552172 scopus 로고    scopus 로고
    • Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?
    • Schievano A., Tenca A., Lonati S., Manzini E., Adani F. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?. Appl Energy 2014, 124:335-342.
    • (2014) Appl Energy , vol.124 , pp. 335-342
    • Schievano, A.1    Tenca, A.2    Lonati, S.3    Manzini, E.4    Adani, F.5
  • 120
    • 84872360595 scopus 로고    scopus 로고
    • Bio-hydrogen production by biodiesel-derived crude glycerol bioconversion: a techno-economic evaluation
    • Sarma S.J., Brar S.K., Le Bihan Y., Buelna G. Bio-hydrogen production by biodiesel-derived crude glycerol bioconversion: a techno-economic evaluation. Bioproc Biosyst Eng 2013, 36:1-10.
    • (2013) Bioproc Biosyst Eng , vol.36 , pp. 1-10
    • Sarma, S.J.1    Brar, S.K.2    Le Bihan, Y.3    Buelna, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.