-
1
-
-
84864653119
-
Microbial conversion of glycerol: present status and future prospects
-
Khanna S., Goyal A., Moholkar V.S. Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 2012, 32:232-265.
-
(2012)
Crit Rev Biotechnol
, vol.32
, pp. 232-265
-
-
Khanna, S.1
Goyal, A.2
Moholkar, V.S.3
-
2
-
-
84923367677
-
Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology
-
Trchounian A. Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit Rev Biotechnol 2015, 35:103-113.
-
(2015)
Crit Rev Biotechnol
, vol.35
, pp. 103-113
-
-
Trchounian, A.1
-
3
-
-
84928468821
-
Automotive hydrogen fuelling stations: an international review
-
Alazemi J., Ansdrews J. Automotive hydrogen fuelling stations: an international review. Renew Sustain Energy Rev 2015, 48:483-499.
-
(2015)
Renew Sustain Energy Rev
, vol.48
, pp. 483-499
-
-
Alazemi, J.1
Ansdrews, J.2
-
4
-
-
15944404697
-
Into the hydrogen energy economy - milestones
-
Winter C.J. Into the hydrogen energy economy - milestones. Int J Hydrogen Energy 2005, 30:681-685.
-
(2005)
Int J Hydrogen Energy
, vol.30
, pp. 681-685
-
-
Winter, C.J.1
-
5
-
-
84937147611
-
-
Clean hydrogen fuel created with sunlight and water in new method. [accessed 05.08.13].
-
Shubber K. Clean hydrogen fuel created with sunlight and water in new method. [accessed 05.08.13]. http://www.wired.co.uk/news/archive/2013-08/05/hydrogen-gas-solar-reactor.
-
-
-
Shubber, K.1
-
6
-
-
85026683600
-
Introduction
-
Godula-Jopek A editor. Hydrogen Production by Electrolysis. Wiley-C-VCH Verlag GmbH & Co.
-
Godula-Jopek A. Introduction. In: Godula-Jopek A editor. Hydrogen Production by Electrolysis. Wiley-C-VCH Verlag GmbH & Co. 2015. p. 1-33.
-
(2015)
, pp. 1-33
-
-
Godula-Jopek, A.1
-
7
-
-
67650740864
-
Fermentative hydrogen production: principles, progress, and prognosis
-
Hallenbeck P.C. Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energy 2009, 34:7379-7389.
-
(2009)
Int J Hydrogen Energy
, vol.34
, pp. 7379-7389
-
-
Hallenbeck, P.C.1
-
8
-
-
77953564075
-
Metabolic engineering to enhance bacterial hydrogen production
-
Maeda T., Sanchez-Torres V., Wood T.K. Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 2008, 1:30-39.
-
(2008)
Microb Biotechnol
, vol.1
, pp. 30-39
-
-
Maeda, T.1
Sanchez-Torres, V.2
Wood, T.K.3
-
10
-
-
84937123026
-
Fermentation
-
Neidhardt, FG, editor-in-Chief. Cellular and Molecular Biology. ASM Press: Washington DC.
-
Bock A, Sawers G. Fermentation. In: Neidhardt, FG, editor-in-Chief. Escherichia coli and Salmonella. Cellular and Molecular Biology. ASM Press: Washington DC, 2006. http://www.ecosal.org.
-
(2006)
Escherichia coli and Salmonella.
-
-
Bock, A.1
Sawers, G.2
-
11
-
-
84922463707
-
A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products
-
Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P.N.L., et al. A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 2015, 144:73-95.
-
(2015)
Appl Energy
, vol.144
, pp. 73-95
-
-
Ghimire, A.1
Frunzo, L.2
Pirozzi, F.3
Trably, E.4
Escudie, R.5
Lens, P.N.L.6
-
12
-
-
84923539842
-
Strategies for improvement of biohydrogen production from organic-rich wastewater: a review
-
Arimi M.M., Knodel J., Kiprop A., Namango S.S., Zhang Y., Geiben S.-U. Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy 2015, 75:101-118.
-
(2015)
Biomass Bioenergy
, vol.75
, pp. 101-118
-
-
Arimi, M.M.1
Knodel, J.2
Kiprop, A.3
Namango, S.S.4
Zhang, Y.5
Geiben, S.-U.6
-
13
-
-
33746868000
-
Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering
-
Dharmadi Y., Murarka A., Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioengineer 2006, 94:821-829.
-
(2006)
Biotechnol Bioengineer
, vol.94
, pp. 821-829
-
-
Dharmadi, Y.1
Murarka, A.2
Gonzalez, R.3
-
14
-
-
71549150951
-
2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH
-
2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrogen Energy 2009, 34:8839-8845.
-
(2009)
Int J Hydrogen Energy
, vol.34
, pp. 8839-8845
-
-
Trchounian, K.1
Trchounian, A.2
-
15
-
-
84871673203
-
Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals
-
Clomburg J.M., Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 2013, 31:20-28.
-
(2013)
Trends Biotechnol
, vol.31
, pp. 20-28
-
-
Clomburg, J.M.1
Gonzalez, R.2
-
16
-
-
0017343370
-
Energy conservation in chemotropic anaerobic bacteria
-
Thauer R.K., Kaster A.K., Goenrich M. Energy conservation in chemotropic anaerobic bacteria. Bacteriol Rev 1977, 41:100-180.
-
(1977)
Bacteriol Rev
, vol.41
, pp. 100-180
-
-
Thauer, R.K.1
Kaster, A.K.2
Goenrich, M.3
-
17
-
-
84857585600
-
Hydrogen via steam reforming of liquid biofeedstock
-
Nahar G., Dupont V. Hydrogen via steam reforming of liquid biofeedstock. Biofuels 2012, 3:167-191.
-
(2012)
Biofuels
, vol.3
, pp. 167-191
-
-
Nahar, G.1
Dupont, V.2
-
18
-
-
39649103644
-
Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals
-
Murarka A., Dharmadi Y., Yazdani S.S., Gonzalez R. Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 2008, 74:1124-1135.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 1124-1135
-
-
Murarka, A.1
Dharmadi, Y.2
Yazdani, S.S.3
Gonzalez, R.4
-
19
-
-
0042430573
-
Glycerol facilitator GlpF and the associated aquaporin family of channels
-
Stroud R.M., Miercke L.J.W., O'Connell J., Khademi S., Lee J.K., Remis J., et al. Glycerol facilitator GlpF and the associated aquaporin family of channels. Curr Opin Struct Biol 2003, 13:424-431.
-
(2003)
Curr Opin Struct Biol
, vol.13
, pp. 424-431
-
-
Stroud, R.M.1
Miercke, L.J.W.2
O'Connell, J.3
Khademi, S.4
Lee, J.K.5
Remis, J.6
-
20
-
-
81455143851
-
Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli
-
Cintolesi A., Comburg J.M., Rigou V., Zygourakis K., Gonzalez R. Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnol Bioengineer 2011, 109:187-198.
-
(2011)
Biotechnol Bioengineer
, vol.109
, pp. 187-198
-
-
Cintolesi, A.1
Comburg, J.M.2
Rigou, V.3
Zygourakis, K.4
Gonzalez, R.5
-
21
-
-
84865803086
-
Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol
-
Ganesh I., Ravikumar S., Hong S.H. Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotechnol Bioproc Engineer 2012, 17:671-678.
-
(2012)
Biotechnol Bioproc Engineer
, vol.17
, pp. 671-678
-
-
Ganesh, I.1
Ravikumar, S.2
Hong, S.H.3
-
22
-
-
84871622059
-
Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs
-
Poladyan A., Avagyan A., Vassilian A., Trchounian A. Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs. Curr Microbiol 2013, 66:49-55.
-
(2013)
Curr Microbiol
, vol.66
, pp. 49-55
-
-
Poladyan, A.1
Avagyan, A.2
Vassilian, A.3
Trchounian, A.4
-
23
-
-
84893508699
-
Enhanced production of 3-hydroxy-propionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli
-
Kim K., Kim S.K., Park Y.C., Seo J.H. Enhanced production of 3-hydroxy-propionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 2014, 156:170-175.
-
(2014)
Bioresour Technol
, vol.156
, pp. 170-175
-
-
Kim, K.1
Kim, S.K.2
Park, Y.C.3
Seo, J.H.4
-
24
-
-
33746867314
-
Glycerol and methylglyoxal metabolism.
-
Neidhardt, FG, editor-in-Chief, Cellular and Molecular Biology. ASM Press: Washington DC.
-
Booth IR. Glycerol and methylglyoxal metabolism. In: Neidhardt, FG, editor-in-Chief, EcoSal - Escherichia coli and Salmonella. Cellular and Molecular Biology. ASM Press: Washington DC, 2006. http://www.ecosal.org.
-
(2006)
EcoSal - Escherichia coli and Salmonella.
-
-
Booth, I.R.1
-
26
-
-
0036783191
-
Regulation of Escherichia coli formate hydrogenlyase activity by formate at alkaline pH
-
Mnatsakanyan N., Vassilian A., Navasardyan L., Bagramyan K., Trchounian A. Regulation of Escherichia coli formate hydrogenlyase activity by formate at alkaline pH. Curr Microbiol 2002, 45:281-286.
-
(2002)
Curr Microbiol
, vol.45
, pp. 281-286
-
-
Mnatsakanyan, N.1
Vassilian, A.2
Navasardyan, L.3
Bagramyan, K.4
Trchounian, A.5
-
27
-
-
24644459850
-
Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate
-
Mnatsakanyan N., Bagramyan K., Trchounian A. Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate. Cell Biochem Biophys 2004, 41:357-365.
-
(2004)
Cell Biochem Biophys
, vol.41
, pp. 357-365
-
-
Mnatsakanyan, N.1
Bagramyan, K.2
Trchounian, A.3
-
28
-
-
83055176774
-
Application of Plackett-Burman experimental design to optimize biohydrogen fermentation by E. coli (XL1-BLUE)
-
Bakonyi P., Nemestóthy N., Lövitusz É., Bélafi-Bakó K. Application of Plackett-Burman experimental design to optimize biohydrogen fermentation by E. coli (XL1-BLUE). Int J Hydrogen Energy 2011, 36:13949-13954.
-
(2011)
Int J Hydrogen Energy
, vol.36
, pp. 13949-13954
-
-
Bakonyi, P.1
Nemestóthy, N.2
Lövitusz, É.3
Bélafi-Bakó, K.4
-
29
-
-
0031277823
-
Growth of an Escherichia coli mutant deficient in respiration
-
Futatsugi L., Saito H., Kakegawa T., Kobayashi H. Growth of an Escherichia coli mutant deficient in respiration. FEMS Microbiol Lett 1997, 156:141-145.
-
(1997)
FEMS Microbiol Lett
, vol.156
, pp. 141-145
-
-
Futatsugi, L.1
Saito, H.2
Kakegawa, T.3
Kobayashi, H.4
-
30
-
-
0742286265
-
Structure and functioning of formate hydrogen lyase, key enzyme of mixed-acid fermentation
-
Bagramyan K., Trchounian A. Structure and functioning of formate hydrogen lyase, key enzyme of mixed-acid fermentation. Biochemistry (Moscow) 2003, 68:1159-1170.
-
(2003)
Biochemistry (Moscow)
, vol.68
, pp. 1159-1170
-
-
Bagramyan, K.1
Trchounian, A.2
-
31
-
-
84893732702
-
Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force?
-
Trchounian A., Sawers R.G. Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force?. IUBMB Life 2014, 66:1-7.
-
(2014)
IUBMB Life
, vol.66
, pp. 1-7
-
-
Trchounian, A.1
Sawers, R.G.2
-
32
-
-
36749100610
-
Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production
-
Redwood M.D., Mikheenko I.P., Sargent F., Macaskie L.E. Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 2008, 278:48-55.
-
(2008)
FEMS Microbiol Lett
, vol.278
, pp. 48-55
-
-
Redwood, M.D.1
Mikheenko, I.P.2
Sargent, F.3
Macaskie, L.E.4
-
33
-
-
77950503486
-
How Escherichia coli is equipped to oxidize hydrogen under different redox conditions
-
Lukey M.J., Parkin A., Roessler M.M., Murphy B.J., Harmer J., Palmer T., et al. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 2010, 285:3928-3938.
-
(2010)
J Biol Chem
, vol.285
, pp. 3928-3938
-
-
Lukey, M.J.1
Parkin, A.2
Roessler, M.M.3
Murphy, B.J.4
Harmer, J.5
Palmer, T.6
-
35
-
-
84886410850
-
Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH
-
Poladyan A., Trchounian K., Sawers G., Trchounian A. Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiol Lett 2013, 348:143-148.
-
(2013)
FEMS Microbiol Lett
, vol.348
, pp. 143-148
-
-
Poladyan, A.1
Trchounian, K.2
Sawers, G.3
Trchounian, A.4
-
36
-
-
0025914936
-
Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1
-
Menon N.K., Robbins J., Wendt J.C., Shanmugan K.T., Przybyla A.E. Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 1991, 173:4851-4861.
-
(1991)
J Bacteriol
, vol.173
, pp. 4851-4861
-
-
Menon, N.K.1
Robbins, J.2
Wendt, J.C.3
Shanmugan, K.T.4
Przybyla, A.E.5
-
37
-
-
0028308306
-
Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2
-
Menon N.K., Chatelus C.Y., Dervartanian M., Wendt J.C., Shanmugam K.T., Peck H.D., et al. Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 1994, 176:4416-4423.
-
(1994)
J Bacteriol
, vol.176
, pp. 4416-4423
-
-
Menon, N.K.1
Chatelus, C.Y.2
Dervartanian, M.3
Wendt, J.C.4
Shanmugam, K.T.5
Peck, H.D.6
-
38
-
-
0026725149
-
Mutational analysis of the operon (hyc) determing hydrogenase 3 formation in Escherichia coli
-
Sauter M., Bohm R., Bock A. Mutational analysis of the operon (hyc) determing hydrogenase 3 formation in Escherichia coli. Mol Microbiol 1992, 6:1523-1532.
-
(1992)
Mol Microbiol
, vol.6
, pp. 1523-1532
-
-
Sauter, M.1
Bohm, R.2
Bock, A.3
-
39
-
-
0030725104
-
A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system
-
Andrews S.C., Berks B.C., Mcclay J., Ambler A., Quail M.A., Golby P., et al. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 1997, 143:3633-3647.
-
(1997)
Microbiology
, vol.143
, pp. 3633-3647
-
-
Andrews, S.C.1
Berks, B.C.2
Mcclay, J.3
Ambler, A.4
Quail, M.A.5
Golby, P.6
-
40
-
-
0032873183
-
Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [Ni-Fe] hydrogenases 1 and 2 of Escherichia coli
-
Richard D.J., Sawers G., Sargent F., McWalter L., Boxer D.H. Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [Ni-Fe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 1999, 145:2903-2912.
-
(1999)
Microbiology
, vol.145
, pp. 2903-2912
-
-
Richard, D.J.1
Sawers, G.2
Sargent, F.3
McWalter, L.4
Boxer, D.H.5
-
41
-
-
0036304751
-
Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF
-
Hube M., Blokesch M., Bock A. Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 2002, 184:3879-3885.
-
(2002)
J Bacteriol
, vol.184
, pp. 3879-3885
-
-
Hube, M.1
Blokesch, M.2
Bock, A.3
-
42
-
-
84864507541
-
Transcriptional control of hydrogen production during mixed carbon fermentation by hydrogenases 4 (hyf) and 3 (hyc) in Escherichia coli
-
Trchounian K. Transcriptional control of hydrogen production during mixed carbon fermentation by hydrogenases 4 (hyf) and 3 (hyc) in Escherichia coli. Gene 2012, 506:156-160.
-
(2012)
Gene
, vol.506
, pp. 156-160
-
-
Trchounian, K.1
-
43
-
-
84875209994
-
Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol
-
Sanchez-Torres V., Yusoff M.Y.M., Nakano C., Maeda M., Ogawa H.I., Wood T.K. Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol. Int J Hydrogen Energy 2013, 38:3905-3912.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 3905-3912
-
-
Sanchez-Torres, V.1
Yusoff, M.Y.M.2
Nakano, C.3
Maeda, M.4
Ogawa, H.I.5
Wood, T.K.6
-
45
-
-
84875216800
-
2 production during mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5
-
2 production during mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5. Int J Hydrogen Energy 2013, 38:3919-3927.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 3919-3927
-
-
Trchounian, K.1
Trchounian, A.2
-
46
-
-
84937123915
-
Crude glycerol as a perspective substrate for bio-hydrogen production in Latvia
-
Dimanta I., Grunduls A., Nikolaeva V., Kleperis J., Muiznieks I. Crude glycerol as a perspective substrate for bio-hydrogen production in Latvia. Int Sci J Alt Energy Ecology 2012, 9:28-31.
-
(2012)
Int Sci J Alt Energy Ecology
, vol.9
, pp. 28-31
-
-
Dimanta, I.1
Grunduls, A.2
Nikolaeva, V.3
Kleperis, J.4
Muiznieks, I.5
-
48
-
-
84857036850
-
1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli
-
1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. J Bioenerg Biomembr 2011, 43:645-650.
-
(2011)
J Bioenerg Biomembr
, vol.43
, pp. 645-650
-
-
Trchounian, K.1
Pinske, C.2
Sawers, R.G.3
Trchounian, A.4
-
49
-
-
1342324078
-
1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation
-
1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem Biophys Res Comm 2004, 315:1051-1057.
-
(2004)
Biochem Biophys Res Comm
, vol.315
, pp. 1051-1057
-
-
Trchounian, A.1
-
50
-
-
84878632648
-
Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation
-
Trchounian K., Blbulyan S., Trchounian A. Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation. J Bioenerg Biomembr 2013, 45:253-260.
-
(2013)
J Bioenerg Biomembr
, vol.45
, pp. 253-260
-
-
Trchounian, K.1
Blbulyan, S.2
Trchounian, A.3
-
51
-
-
84930957135
-
Clean energy technology development: hydrogen production by Escherichia coli during glycerol fermentation.
-
Dincer I, Colpan CO, Kizilkan O, et al., editor. Proceedings of the 13th International Conference on Clean Energy, Istanbul (Turkey)
-
Trchounian K, Trchounian A. Clean energy technology development: hydrogen production by Escherichia coli during glycerol fermentation. In: Dincer I, Colpan CO, Kizilkan O, et al., editor. Proceedings of the 13th International Conference on Clean Energy, Istanbul (Turkey), 2014. p. 1322-8.
-
(2014)
, pp. 1322-1328
-
-
Trchounian, K.1
Trchounian, A.2
-
52
-
-
84930944252
-
Impact of membrane-associated hydrogenases on the FoF1-ATPase in Escherichia coli during glycerol and mixed carbon fermentation: atpase activity and its inhibition by N, N'-dicyclohexylcarbodiimide in the mutants lacking hydrogenases
-
Blbulyan S., Trchounian A. Impact of membrane-associated hydrogenases on the FoF1-ATPase in Escherichia coli during glycerol and mixed carbon fermentation: atpase activity and its inhibition by N, N'-dicyclohexylcarbodiimide in the mutants lacking hydrogenases. Arch Biochem Biophys 2015, 579:67-72.
-
(2015)
Arch Biochem Biophys
, vol.579
, pp. 67-72
-
-
Blbulyan, S.1
Trchounian, A.2
-
53
-
-
0023047645
-
Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites
-
Pettigrew D.W. Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites. Biochemistry 1986, 25:4711-4718.
-
(1986)
Biochemistry
, vol.25
, pp. 4711-4718
-
-
Pettigrew, D.W.1
-
54
-
-
84866740955
-
1-ATPase with bio-hydrogen production activity of Rhodobacter sphaeroides: effects of diphenylene iodonium, hydrogenase inhibitor, and its solvent dimethylsulphoxide
-
1-ATPase with bio-hydrogen production activity of Rhodobacter sphaeroides: effects of diphenylene iodonium, hydrogenase inhibitor, and its solvent dimethylsulphoxide. J Bioenerg Biomembr 2012, 44:495-502.
-
(2012)
J Bioenerg Biomembr
, vol.44
, pp. 495-502
-
-
Hakobyan, L.1
Gabrielyan, L.2
Trchounian, A.3
-
55
-
-
84886308686
-
Escherichia coli multiple [Ni-Fe]-hydrogenases are sensitive to osmotic stress during glycerol fermentation but at different pHs
-
Trchounian K., Trchounian A. Escherichia coli multiple [Ni-Fe]-hydrogenases are sensitive to osmotic stress during glycerol fermentation but at different pHs. FEBS Lett 2013, 587:3562-3566.
-
(2013)
FEBS Lett
, vol.587
, pp. 3562-3566
-
-
Trchounian, K.1
Trchounian, A.2
-
57
-
-
84897393788
-
Hydrogen production by Escherichia coli depends on glucose concentration and its combination with glycerol at different pHs
-
Trchounian K., Sargsyan H., Trchounian A. Hydrogen production by Escherichia coli depends on glucose concentration and its combination with glycerol at different pHs. Int J Hydrogen Energy 2014, 39:6419-6423.
-
(2014)
Int J Hydrogen Energy
, vol.39
, pp. 6419-6423
-
-
Trchounian, K.1
Sargsyan, H.2
Trchounian, A.3
-
58
-
-
84903454473
-
Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers
-
Gabrielyan L., Sargsyan H., Hakobyan L., Trchounian A. Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers. Appl Energy 2014, 131:20-25.
-
(2014)
Appl Energy
, vol.131
, pp. 20-25
-
-
Gabrielyan, L.1
Sargsyan, H.2
Hakobyan, L.3
Trchounian, A.4
-
59
-
-
0020744295
-
An electrochemical cell for reduction of biochemical: its application to the study of the effect pf pH and redox potential on the activity of hydrogenases
-
Fernandez V.M. An electrochemical cell for reduction of biochemical: its application to the study of the effect pf pH and redox potential on the activity of hydrogenases. Anal Biochem 1983, 130:54-59.
-
(1983)
Anal Biochem
, vol.130
, pp. 54-59
-
-
Fernandez, V.M.1
-
60
-
-
77956600423
-
Hydrogen production by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus
-
Eltsova Z.A., Vasilieva L.G., Tsygankov A.A. Hydrogen production by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus. Appl Biochem Microbiol 2010, 46:487-491.
-
(2010)
Appl Biochem Microbiol
, vol.46
, pp. 487-491
-
-
Eltsova, Z.A.1
Vasilieva, L.G.2
Tsygankov, A.A.3
-
61
-
-
77956330310
-
Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli
-
Noguchi K., Riggins D.P., Eldahan K.C., Kitko R.D., Slonczewski J.L. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS ONE 2010, 5:e10132.
-
(2010)
PLoS ONE
, vol.5
, pp. e10132
-
-
Noguchi, K.1
Riggins, D.P.2
Eldahan, K.C.3
Kitko, R.D.4
Slonczewski, J.L.5
-
62
-
-
77953440072
-
Establishment of the redox potential of water saturated with hydrogen
-
Piskarev I.M., Ushkanov V.A., Aristova N.A., Likhachev P.P., Myslivets T.S. Establishment of the redox potential of water saturated with hydrogen. Biophysics 2010, 55:13-17.
-
(2010)
Biophysics
, vol.55
, pp. 13-17
-
-
Piskarev, I.M.1
Ushkanov, V.A.2
Aristova, N.A.3
Likhachev, P.P.4
Myslivets, T.S.5
-
63
-
-
0024556830
-
Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy
-
Bagramyan K.A., Martirosov S.M. Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy. FEBS Lett 1989, 249:149-152.
-
(1989)
FEBS Lett
, vol.249
, pp. 149-152
-
-
Bagramyan, K.A.1
Martirosov, S.M.2
-
64
-
-
42149127801
-
Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli
-
Maeda T., Wood T.K. Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli. Int J Hydrogen Energy 2008, 33:2409-2412.
-
(2008)
Int J Hydrogen Energy
, vol.33
, pp. 2409-2412
-
-
Maeda, T.1
Wood, T.K.2
-
65
-
-
0021138992
-
Anaerobiosis, formate, nitrate, and pyrA are involved in the regulation of formate hydrogenlyase in Salmonella typhimurium
-
Barrett E.L., Kwan H.S., Macy J. Anaerobiosis, formate, nitrate, and pyrA are involved in the regulation of formate hydrogenlyase in Salmonella typhimurium. J Bacteriol 1984, 158:972-977.
-
(1984)
J Bacteriol
, vol.158
, pp. 972-977
-
-
Barrett, E.L.1
Kwan, H.S.2
Macy, J.3
-
66
-
-
84857206674
-
Hydrogen production by recombinantEscherichia coli strains
-
Maeda T., Sanchez-Torres V., Wood T.K. Hydrogen production by recombinantEscherichia coli strains. Microb Biotechnol 2012, 5:214-225.
-
(2012)
Microb Biotechnol
, vol.5
, pp. 214-225
-
-
Maeda, T.1
Sanchez-Torres, V.2
Wood, T.K.3
-
67
-
-
72949091838
-
An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol
-
Hu H., Wood T.K. An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Comm 2010, 391:1033-1038.
-
(2010)
Biochem Biophys Res Comm
, vol.391
, pp. 1033-1038
-
-
Hu, H.1
Wood, T.K.2
-
68
-
-
84900808181
-
Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol
-
Tran K.T., Maeda M., Wood T.K. Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 2014, 98:4757-4770.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 4757-4770
-
-
Tran, K.T.1
Maeda, M.2
Wood, T.K.3
-
69
-
-
84925534876
-
Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol
-
Tran K.T., Maeda T., Sanchez-Torres V., Wood T.K. Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol. Appl Microbiol Biotechnol 2015, 99:2573-2581.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 2573-2581
-
-
Tran, K.T.1
Maeda, T.2
Sanchez-Torres, V.3
Wood, T.K.4
-
70
-
-
32044471535
-
Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli
-
Yoshida A., Nishimura T., Kawagushi H., Inui M., Yukawa H. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli. Appl Env Microbiol 2005, 71:6762-6768.
-
(2005)
Appl Env Microbiol
, vol.71
, pp. 6762-6768
-
-
Yoshida, A.1
Nishimura, T.2
Kawagushi, H.3
Inui, M.4
Yukawa, H.5
-
71
-
-
84928485570
-
High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling
-
Rollin J.A., del Campo J.M., Myung S., Sun F., You C., Bakovic A., et al. High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Nat Acad Sci USA 2015, 112:4964-4969.
-
(2015)
Proc Nat Acad Sci USA
, vol.112
, pp. 4964-4969
-
-
Rollin, J.A.1
del Campo, J.M.2
Myung, S.3
Sun, F.4
You, C.5
Bakovic, A.6
-
72
-
-
84907158615
-
Comparison of glucose, glycerol and crude glycerol fermentation by Escherichia coli K12
-
Chaudhary N., Ngadi M.O., Simpson B. Comparison of glucose, glycerol and crude glycerol fermentation by Escherichia coli K12. J Bioprocess Biotecniq 2012, S1:001.
-
(2012)
J Bioprocess Biotecniq
, vol.S1
, pp. 001
-
-
Chaudhary, N.1
Ngadi, M.O.2
Simpson, B.3
-
73
-
-
0025031657
-
Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli
-
Schlensog V., Bock A. Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol 1990, 4:1319-1327.
-
(1990)
Mol Microbiol
, vol.4
, pp. 1319-1327
-
-
Schlensog, V.1
Bock, A.2
-
75
-
-
84929076470
-
Escherichia coli hydrogen gas production from glycerol: effects of external formate
-
Trchounian K., Trchounian A. Escherichia coli hydrogen gas production from glycerol: effects of external formate. Renew Energy 2015, 83:345-351.
-
(2015)
Renew Energy
, vol.83
, pp. 345-351
-
-
Trchounian, K.1
Trchounian, A.2
-
76
-
-
84937156762
-
Escherichia coli growth and hydrogen production in batch culture upon formate alone and with glycerol co-fermentation at different pHs
-
Trchounian K., Abrahamyan V., Poladyan A., Trchounian A. Escherichia coli growth and hydrogen production in batch culture upon formate alone and with glycerol co-fermentation at different pHs. Int J Hydrogen Energy 2015, 10.1016/j.ijhydene.2015.06.087.
-
(2015)
Int J Hydrogen Energy
-
-
Trchounian, K.1
Abrahamyan, V.2
Poladyan, A.3
Trchounian, A.4
-
77
-
-
34248333429
-
Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae
-
Liu F., Fang B. Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae. Biotechnol J 2007, 2:374-380.
-
(2007)
Biotechnol J
, vol.2
, pp. 374-380
-
-
Liu, F.1
Fang, B.2
-
78
-
-
77955176908
-
Hydrogen production from glycerol using halophilic fermentative bacteria
-
Kivisto A., Santala V., Karp M. Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour Technol 2010, 101:8671-8677.
-
(2010)
Bioresour Technol
, vol.101
, pp. 8671-8677
-
-
Kivisto, A.1
Santala, V.2
Karp, M.3
-
79
-
-
84873282363
-
Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter sp
-
Maru B.T., Constanti M., Stchigel A.M., Medina F., Sueiras J.E. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter sp. Biotechnol Prog 2013, 29:31-38.
-
(2013)
Biotechnol Prog
, vol.29
, pp. 31-38
-
-
Maru, B.T.1
Constanti, M.2
Stchigel, A.M.3
Medina, F.4
Sueiras, J.E.5
-
80
-
-
84855843354
-
Near stoichiometric reforming of biodiesel derived crude glycerol to hydrogen by photofermentation
-
Ghosh D., Tourigny A., Hallenbeck P.C. Near stoichiometric reforming of biodiesel derived crude glycerol to hydrogen by photofermentation. Int J Hydrogen Energy 2012, 37:2273-2277.
-
(2012)
Int J Hydrogen Energy
, vol.37
, pp. 2273-2277
-
-
Ghosh, D.1
Tourigny, A.2
Hallenbeck, P.C.3
-
81
-
-
84872394321
-
Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds
-
Pott R.W.M., Howe C.J., Dennis J.S. Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds. Bioresour Technol 2013, 130:725-730.
-
(2013)
Bioresour Technol
, vol.130
, pp. 725-730
-
-
Pott, R.W.M.1
Howe, C.J.2
Dennis, J.S.3
-
82
-
-
84937147556
-
Assessment of bio-hydrogen production from glycerol and glucose by fermentative bacteria
-
Dimanta I., Nikolaeva Y., Grunduls A., Muiznieks I., Kleperis J. Assessment of bio-hydrogen production from glycerol and glucose by fermentative bacteria. Energetika 2013, 59:124-128.
-
(2013)
Energetika
, vol.59
, pp. 124-128
-
-
Dimanta, I.1
Nikolaeva, Y.2
Grunduls, A.3
Muiznieks, I.4
Kleperis, J.5
-
83
-
-
84857452787
-
Hydrogen production from biodiesel by-product by immobilized Enterobacter aerogenes
-
Han J., Lee D., Cho J., Lee J., Kim S. Hydrogen production from biodiesel by-product by immobilized Enterobacter aerogenes. Bioproc Biosyst Engineer 2012, 35:151-157.
-
(2012)
Bioproc Biosyst Engineer
, vol.35
, pp. 151-157
-
-
Han, J.1
Lee, D.2
Cho, J.3
Lee, J.4
Kim, S.5
-
84
-
-
84878108003
-
Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate
-
Reungsang A., Sittijunda S., O-thong S. Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate. Int J Hydrogen Energy 2013, 38:6970-6979.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 6970-6979
-
-
Reungsang, A.1
Sittijunda, S.2
O-thong, S.3
-
85
-
-
84890432311
-
Statistical optimization of medium components affecting simultaneous fermentative hydrogen and ethanol production from crude glycerol by thermotolerant Klebsiella sp. TR17
-
Chookaew T., O-Thong S., Prasertsan P. Statistical optimization of medium components affecting simultaneous fermentative hydrogen and ethanol production from crude glycerol by thermotolerant Klebsiella sp. TR17. Int J Hydrogen Energy 2014, 39:751-760.
-
(2014)
Int J Hydrogen Energy
, vol.39
, pp. 751-760
-
-
Chookaew, T.1
O-Thong, S.2
Prasertsan, P.3
-
86
-
-
84887100832
-
Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria
-
Lo Y.C., Chen X.J., Yuan Y., Chang J.S. Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. Int J Hydrogen Energy 2013, 38:15815-15828.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 15815-15828
-
-
Lo, Y.C.1
Chen, X.J.2
Yuan, Y.3
Chang, J.S.4
-
87
-
-
84887085748
-
Hydrogen production from meat processing and restaurant waste derived crude glycerol by anaerobic fermentation and utilization of the spent broth
-
Sarma S.J., Brar S.K., Le Bihan Y., Buelna G., Soccol S.R. Hydrogen production from meat processing and restaurant waste derived crude glycerol by anaerobic fermentation and utilization of the spent broth. J Chem Technol Biotechnol 2013, 88:2264-2271.
-
(2013)
J Chem Technol Biotechnol
, vol.88
, pp. 2264-2271
-
-
Sarma, S.J.1
Brar, S.K.2
Le Bihan, Y.3
Buelna, G.4
Soccol, S.R.5
-
88
-
-
84923328005
-
Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis
-
Kumar P., Sharma R., Ray S., Mehariya S., Patel S.K., Lee J.K., et al. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 2015, 182:383-388.
-
(2015)
Bioresour Technol
, vol.182
, pp. 383-388
-
-
Kumar, P.1
Sharma, R.2
Ray, S.3
Mehariya, S.4
Patel, S.K.5
Lee, J.K.6
-
89
-
-
84910051633
-
Improved bioconversion of crude glycerol to hydrogen by statistical optimization of media components
-
Mangayil R., Aho T., Karp M., Santala V. Improved bioconversion of crude glycerol to hydrogen by statistical optimization of media components. Renew Energy 2015, 75:583-589.
-
(2015)
Renew Energy
, vol.75
, pp. 583-589
-
-
Mangayil, R.1
Aho, T.2
Karp, M.3
Santala, V.4
-
90
-
-
28744432513
-
Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process
-
Ito T., Nakashimada Y., Senba K., Matsui T., Nishio N. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 2005, 100:260-265.
-
(2005)
J Biosci Bioeng
, vol.100
, pp. 260-265
-
-
Ito, T.1
Nakashimada, Y.2
Senba, K.3
Matsui, T.4
Nishio, N.5
-
91
-
-
84986216912
-
Genome sequence of Halanaerobium saccharolyticum subsp. saccharolyticum strain DSM 6643T, a halophilic hydrogen-producing bacterium
-
e00187-13
-
Kivisto A., Largo A., Ciranna A., Sanrala V., Roos C., Karp M. Genome sequence of Halanaerobium saccharolyticum subsp. saccharolyticum strain DSM 6643T, a halophilic hydrogen-producing bacterium. Genome Announcements 2013, 1. e00187-13.
-
(2013)
Genome Announcements
, vol.1
-
-
Kivisto, A.1
Largo, A.2
Ciranna, A.3
Sanrala, V.4
Roos, C.5
Karp, M.6
-
92
-
-
84864094456
-
Optimization of selected salts concentration for improved biohydrogen production from biodiesel-based glycerol using Enterobacter aerogenes
-
Jitrwung R., Verrett J., Yargeau V. Optimization of selected salts concentration for improved biohydrogen production from biodiesel-based glycerol using Enterobacter aerogenes. Renew Energy 2013, 50:222-236.
-
(2013)
Renew Energy
, vol.50
, pp. 222-236
-
-
Jitrwung, R.1
Verrett, J.2
Yargeau, V.3
-
93
-
-
84926191612
-
Light-dark duration alternation effects on Rhodobacter sphaeroides growth, membrane properties and bio-hydrogen production in batch culture
-
Sargsyan H., Gabrielyan L., Hakobyan L., Trchounian A. Light-dark duration alternation effects on Rhodobacter sphaeroides growth, membrane properties and bio-hydrogen production in batch culture. Int J Hydrogen Energy 2015, 40:4084-4091.
-
(2015)
Int J Hydrogen Energy
, vol.40
, pp. 4084-4091
-
-
Sargsyan, H.1
Gabrielyan, L.2
Hakobyan, L.3
Trchounian, A.4
-
94
-
-
84865035675
-
Bioconversion of crude glycerol from biodiesel production to hydrogen
-
Mangahil R., Karp M., Santala V. Bioconversion of crude glycerol from biodiesel production to hydrogen. Int J Hydrogen Energy 2012, 37:12198-12204.
-
(2012)
Int J Hydrogen Energy
, vol.37
, pp. 12198-12204
-
-
Mangahil, R.1
Karp, M.2
Santala, V.3
-
95
-
-
84909942668
-
Hydrogen production in single chamber microbial electrolysis cells with different complex substrates
-
Montpart N., Rago L., Baeza J.A., Guisasola A. Hydrogen production in single chamber microbial electrolysis cells with different complex substrates. Water Res 2015, 68:601-605.
-
(2015)
Water Res
, vol.68
, pp. 601-605
-
-
Montpart, N.1
Rago, L.2
Baeza, J.A.3
Guisasola, A.4
-
96
-
-
84902275746
-
The maximum specific hydrogen producing activity of anaerobic mixed cultures: definition and determination
-
Mu Y., Yang H.-Y., Wang Y.-Z., He C.-H., Zhao Q.-B., Wang Y., et al. The maximum specific hydrogen producing activity of anaerobic mixed cultures: definition and determination. Sci Rep 2014, 4:5239.
-
(2014)
Sci Rep
, vol.4
, pp. 5239
-
-
Mu, Y.1
Yang, H.-Y.2
Wang, Y.-Z.3
He, C.-H.4
Zhao, Q.-B.5
Wang, Y.6
-
97
-
-
84955409996
-
Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production
-
Gupta M., Velayutham P., Elbeshbishy E., Hafez H., Khafipour E., Derakhshani H., et al. Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production. Int J Hydrogen Energy 2014, 39:20958-20967.
-
(2014)
Int J Hydrogen Energy
, vol.39
, pp. 20958-20967
-
-
Gupta, M.1
Velayutham, P.2
Elbeshbishy, E.3
Hafez, H.4
Khafipour, E.5
Derakhshani, H.6
-
98
-
-
84940282119
-
Starch: a potential substrate for biohydrogen production
-
Vendruscolo F. Starch: a potential substrate for biohydrogen production. Int J Energy Res 2014, 39:293-302.
-
(2014)
Int J Energy Res
, vol.39
, pp. 293-302
-
-
Vendruscolo, F.1
-
99
-
-
84894084786
-
Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production
-
Marone A., Izzo G., Mentuccia L., Massini G., Paganin P., Rosa S., et al. Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 2014, 68:6-13.
-
(2014)
Renew Energy
, vol.68
, pp. 6-13
-
-
Marone, A.1
Izzo, G.2
Mentuccia, L.3
Massini, G.4
Paganin, P.5
Rosa, S.6
-
100
-
-
84894025416
-
Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp. FS3
-
Song Z.X., Li X.H., Li W.W., Bai Y.X., Fan Y.T., Hou H.W. Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp. FS3. Bioresour Technol 2014, 157:91-97.
-
(2014)
Bioresour Technol
, vol.157
, pp. 91-97
-
-
Song, Z.X.1
Li, X.H.2
Li, W.W.3
Bai, Y.X.4
Fan, Y.T.5
Hou, H.W.6
-
101
-
-
84892367011
-
Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria
-
Debowski M., Korzeniewska E., Filipkowska Z., Zieliński M., Kwiatkowski R. Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria. Int J Hydrogen Energy 2014, 39:1972-1978.
-
(2014)
Int J Hydrogen Energy
, vol.39
, pp. 1972-1978
-
-
Debowski, M.1
Korzeniewska, E.2
Filipkowska, Z.3
Zieliński, M.4
Kwiatkowski, R.5
-
102
-
-
30944443553
-
Biohydrogen production from waste materials
-
Kapdan I.K., Kargi F. Biohydrogen production from waste materials. Enzyme Microb Technol 2006, 38:569-582.
-
(2006)
Enzyme Microb Technol
, vol.38
, pp. 569-582
-
-
Kapdan, I.K.1
Kargi, F.2
-
103
-
-
84893810635
-
Characteristics of biohydrogen fermentation from various substrates
-
Choi J., Ahn Y. Characteristics of biohydrogen fermentation from various substrates. Int J Hydrogen Energy 2013, 39:3152-3159.
-
(2013)
Int J Hydrogen Energy
, vol.39
, pp. 3152-3159
-
-
Choi, J.1
Ahn, Y.2
-
104
-
-
84925869916
-
Lignocellulose biohydrogen: Practical challenges and recent progress
-
Kumar G., Bakonyi P., Periyasamy S., Kim S.H., Nemestóthy N., Bélafi-Bakó K. Lignocellulose biohydrogen: Practical challenges and recent progress. Renew Sustain Energy Rev 2015, 44:728-737.
-
(2015)
Renew Sustain Energy Rev
, vol.44
, pp. 728-737
-
-
Kumar, G.1
Bakonyi, P.2
Periyasamy, S.3
Kim, S.H.4
Nemestóthy, N.5
Bélafi-Bakó, K.6
-
105
-
-
79955465839
-
High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana
-
Ngo T.A., Kim M.S., Sim S.J. High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrogen Energy 2011, 36:5836-5842.
-
(2011)
Int J Hydrogen Energy
, vol.36
, pp. 5836-5842
-
-
Ngo, T.A.1
Kim, M.S.2
Sim, S.J.3
-
106
-
-
84862681207
-
Dark fermentation of hydrogen from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana
-
Ngo T.A., Sim S.J. Dark fermentation of hydrogen from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana. Environ Prog Sustain Energy 2012, 31:466-473.
-
(2012)
Environ Prog Sustain Energy
, vol.31
, pp. 466-473
-
-
Ngo, T.A.1
Sim, S.J.2
-
107
-
-
84876721929
-
Glycerol fermentation to hydrogen by Thermotoga maritima: proposed pathway and bioenergetic considerations
-
Maru B.T., Bielen A.A.M., Constanti M., Medina F., Kengen S.W.M. Glycerol fermentation to hydrogen by Thermotoga maritima: proposed pathway and bioenergetic considerations. Int J Hydrogen Energy 2013, 38:5563-5572.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 5563-5572
-
-
Maru, B.T.1
Bielen, A.A.M.2
Constanti, M.3
Medina, F.4
Kengen, S.W.M.5
-
108
-
-
0037934657
-
A simple energy-conserving system: proton reduction coupled to proton translocation
-
Sapra R., Bagramyan K., Adams M.W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 2003, 100:7545-7550.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 7545-7550
-
-
Sapra, R.1
Bagramyan, K.2
Adams, M.W.3
-
109
-
-
84880156860
-
Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes
-
Bakonyi P., Nemestóthy N., Bélafi-Bakó K. Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int J Hydrogen Energy 2013, 38:9673-9687.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 9673-9687
-
-
Bakonyi, P.1
Nemestóthy, N.2
Bélafi-Bakó, K.3
-
110
-
-
84920668380
-
Simultaneous biohydrogen production and purification in a double-membrane bioreactor system
-
Bakonyi P., Nemestóthy N., Lankó J., Rivera I., Buitrón G., Bélafi-Bakó K. Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. Int J Hydrogen Energy 2015, 40:1690-1697.
-
(2015)
Int J Hydrogen Energy
, vol.40
, pp. 1690-1697
-
-
Bakonyi, P.1
Nemestóthy, N.2
Lankó, J.3
Rivera, I.4
Buitrón, G.5
Bélafi-Bakó, K.6
-
111
-
-
84885423535
-
Evaluation of two gas membrane modules for fermentative hydrogen separation
-
Ramírez-Morales J.E., Tapia-Venegas E., Nemestóthy N., Bakonyi P., Bélafi-Bakó K., Ruiz-Filippi G. Evaluation of two gas membrane modules for fermentative hydrogen separation. Int J Hydrogen Energy 2013, 38:14042-14052.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 14042-14052
-
-
Ramírez-Morales, J.E.1
Tapia-Venegas, E.2
Nemestóthy, N.3
Bakonyi, P.4
Bélafi-Bakó, K.5
Ruiz-Filippi, G.6
-
112
-
-
84937135553
-
The hydrogen permeability of Cu-Zr binary amorphous metallic membranes and the importance of thermal stability
-
Lai T., Yin H., Lind M.L. The hydrogen permeability of Cu-Zr binary amorphous metallic membranes and the importance of thermal stability. J Membr Sci 2015, 489:264-269.
-
(2015)
J Membr Sci
, vol.489
, pp. 264-269
-
-
Lai, T.1
Yin, H.2
Lind, M.L.3
-
114
-
-
58649095930
-
Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future
-
Shao L., Low B.T., Chung T.S., Greenberg A.R. Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci 2009, 327:18-31.
-
(2009)
J Membr Sci
, vol.327
, pp. 18-31
-
-
Shao, L.1
Low, B.T.2
Chung, T.S.3
Greenberg, A.R.4
-
115
-
-
84937146205
-
Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review
-
Barca C., Soric A., Ranava D., Giudici-Orticoni M.T., Ferrasse J.H. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review. Bioresour Technol 2015, 185:386-398.
-
(2015)
Bioresour Technol
, vol.185
, pp. 386-398
-
-
Barca, C.1
Soric, A.2
Ranava, D.3
Giudici-Orticoni, M.T.4
Ferrasse, J.H.5
-
116
-
-
0036827184
-
Inhibition of hydrogen fermentation of organicwastes by lacticacid bacteria
-
Noike T., Takabatake H., Mizuno O., Ohba M. Inhibition of hydrogen fermentation of organicwastes by lacticacid bacteria. Int J Hydrogen Energy 2002, 27:1367-1371.
-
(2002)
Int J Hydrogen Energy
, vol.27
, pp. 1367-1371
-
-
Noike, T.1
Takabatake, H.2
Mizuno, O.3
Ohba, M.4
-
117
-
-
79551653741
-
Revivability of fermentative hydrogen producing bioreactor
-
Baghchehsaraee B., Nakhla G., Karamanev D., Margaritis A. Revivability of fermentative hydrogen producing bioreactor. Int J Hydrogen Energy 2011, 34:2573-2579.
-
(2011)
Int J Hydrogen Energy
, vol.34
, pp. 2573-2579
-
-
Baghchehsaraee, B.1
Nakhla, G.2
Karamanev, D.3
Margaritis, A.4
-
118
-
-
34548674731
-
Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities
-
Maeda T., Sanchez-Torres V., Wood T.K. Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 2008, 76:1036-1042.
-
(2008)
Appl Microbiol Biotechnol
, vol.76
, pp. 1036-1042
-
-
Maeda, T.1
Sanchez-Torres, V.2
Wood, T.K.3
-
119
-
-
84897552172
-
Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?
-
Schievano A., Tenca A., Lonati S., Manzini E., Adani F. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?. Appl Energy 2014, 124:335-342.
-
(2014)
Appl Energy
, vol.124
, pp. 335-342
-
-
Schievano, A.1
Tenca, A.2
Lonati, S.3
Manzini, E.4
Adani, F.5
-
120
-
-
84872360595
-
Bio-hydrogen production by biodiesel-derived crude glycerol bioconversion: a techno-economic evaluation
-
Sarma S.J., Brar S.K., Le Bihan Y., Buelna G. Bio-hydrogen production by biodiesel-derived crude glycerol bioconversion: a techno-economic evaluation. Bioproc Biosyst Eng 2013, 36:1-10.
-
(2013)
Bioproc Biosyst Eng
, vol.36
, pp. 1-10
-
-
Sarma, S.J.1
Brar, S.K.2
Le Bihan, Y.3
Buelna, G.4
|