메뉴 건너뛰기




Volumn 68, Issue 3, 2015, Pages 601-629

Numerical solution of fractional advection-diffusion equation with a nonlinear source term

Author keywords

Collocation method; Fractional advection diffusion equation; Jacobi polynomials; Operational matrix; Riemann Liouville derivative; Stability analysis and convergence

Indexed keywords


EID: 84934292514     PISSN: 10171398     EISSN: 15729265     Source Type: Journal    
DOI: 10.1007/s11075-014-9863-7     Document Type: Article
Times cited : (67)

References (56)
  • 1
    • 17644372361 scopus 로고    scopus 로고
    • An approximate solution for a fractional diffusion-wave equation using the decomposition method
    • Al-Khaled, K., Momani, S.: An approximate solution for a fractional diffusion-wave equation using the decomposition method. Appl. Math. Comput. 165, 473–483 (2005)
    • (2005) Appl. Math. Comput. , vol.165 , pp. 473-483
    • Al-Khaled, K.1    Momani, S.2
  • 2
    • 41449095257 scopus 로고    scopus 로고
    • Numerical solutions for fractional reaction-diffusion equations
    • Baeumer, B., Kovacs, M., Meerschaert, M. M.: Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Applic. 55, 2212–2226 (2008)
    • (2008) Comput. Math. Applic. , vol.55 , pp. 2212-2226
    • Baeumer, B.1    Kovacs, M.2    Meerschaert, M.M.3
  • 3
    • 84945749147 scopus 로고    scopus 로고
    • Fourier spectral methods for fractional–in–space reaction-diffusion equations
    • Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional–in–space reaction-diffusion equations, to appear in BIT (2014)
    • (2014) to appear in BIT
    • Bueno-Orovio, A.1    Kay, D.2    Burrage, K.3
  • 6
    • 84855207635 scopus 로고    scopus 로고
    • Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
    • Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)
    • (2012) J. Comput. Phys. , vol.231 , pp. 1743-1750
    • Celik, C.1    Duman, M.2
  • 7
    • 40849115179 scopus 로고    scopus 로고
    • Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
    • Chen, C., Liu, F., Burrage, K.: Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)
    • (2008) Appl. Math. Comput. , vol.198 , pp. 754-769
    • Chen, C.1    Liu, F.2    Burrage, K.3
  • 8
    • 76649094637 scopus 로고    scopus 로고
    • Solving nonlinear fractional partial diffrential equations using the homotopy analysis method
    • Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial diffrential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010)
    • (2010) Numer. Methods Partial Differ. Equ. , vol.26 , pp. 448-479
    • Dehghan, M.1    Manafian, J.2    Saadatmandi, A.3
  • 10
    • 42649109055 scopus 로고    scopus 로고
    • Numerical approximation of a time-dependent, nonlinear, space-fractional diffusion equation
    • Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time-dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)
    • (2007) SIAM J. Numer. Anal. , vol.45 , pp. 572-591
    • Ervin, V.J.1    Heuer, N.2    Roop, J.P.3
  • 11
    • 33646262074 scopus 로고    scopus 로고
    • Variational formulation for the stationary fractional advection dispersion equation
    • Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)
    • (2006) Numer. Methods Partial Differ. Equ. , vol.22 , pp. 558-576
    • Ervin, V.J.1    Roop, J.P.2
  • 12
    • 33847793586 scopus 로고    scopus 로고
    • Variational solution of fractional advection-dispersion equations on bounded domains in $\mathbb {R}^{d}$ℝd
    • Ervin, V.J., Roop, J.P.: Variational solution of fractional advection-dispersion equations on bounded domains in ℝd$\mathbb {R}^{d}$. Numer. Methods Partial Differ. Equ. 23, 256–281 (2007)
    • (2007) Numer. Methods Partial Differ. Equ. , vol.23 , pp. 256-281
    • Ervin, V.J.1    Roop, J.P.2
  • 13
    • 79955463402 scopus 로고    scopus 로고
    • Application of Taylor series in obtaining the orthogonal operational matrix
    • Eslahchi, M.R., Dehghan, M.: Application of Taylor series in obtaining the orthogonal operational matrix. Comput. Math. Applic. 61, 2596–2604 (2011)
    • (2011) Comput. Math. Applic. , vol.61 , pp. 2596-2604
    • Eslahchi, M.R.1    Dehghan, M.2
  • 14
    • 84968482063 scopus 로고
    • Construction of GaussChristoffel quadrature formulas
    • Gautschi, W.: Construction of GaussChristoffel quadrature formulas. Math. Comput. 22, 251–270 (1968)
    • (1968) Math. Comput. , vol.22 , pp. 251-270
    • Gautschi, W.1
  • 15
    • 0002888704 scopus 로고
    • Orthogonal polynomials–construction theory and applications
    • Gautschi, W.: Orthogonal polynomials–construction theory and applications. J. Comput. Appl. Math. 1213, 61–67 (1985)
    • (1985) J. Comput. Appl. Math. , vol.1213 , pp. 61-67
    • Gautschi, W.1
  • 16
    • 79951958606 scopus 로고    scopus 로고
    • Analytical modelling of fractional advection–dispersion equation defined in a bounded space domain
    • Golbabai, A., Sayevand, K.: Analytical modelling of fractional advection–dispersion equation defined in a bounded space domain. Math. Comput. Modelling 53, 1708–1718 (2011)
    • (2011) Math. Comput. Modelling , vol.53 , pp. 1708-1718
    • Golbabai, A.1    Sayevand, K.2
  • 17
    • 0000223746 scopus 로고
    • Calculation of Gauss quadrature rule
    • Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rule. Math. Comput. 23, 221–230 (1969)
    • (1969) Math. Comput. , vol.23 , pp. 221-230
    • Golub, G.H.1    Welsch, J.H.2
  • 19
    • 84869392671 scopus 로고    scopus 로고
    • Anomalous subdiffusion equations by the meshless collocation method
    • Gu, Y.T., Zhuang, P.H.: Anomalous subdiffusion equations by the meshless collocation method. Aust. J. Mech. Eng. 10(1), 1–8 (2012)
    • (2012) Aust. J. Mech. Eng. , vol.10 , Issue.1 , pp. 1-8
    • Gu, Y.T.1    Zhuang, P.H.2
  • 20
    • 80855130242 scopus 로고    scopus 로고
    • An advanced meshless method for time fractional diffusion equation
    • Gu, Y.T., Zhuang, P.H., Liu, Q.X.: An advanced meshless method for time fractional diffusion equation. Int. J. Comput. Methods 8(4), 653–665 (2011)
    • (2011) Int. J. Comput. Methods , vol.8 , Issue.4 , pp. 653-665
    • Gu, Y.T.1    Zhuang, P.H.2    Liu, Q.X.3
  • 21
    • 55649099424 scopus 로고    scopus 로고
    • A finite element solution for the fractional advection-dispersion equation
    • Huang, Q., Huang, G., Zhan, H.: A finite element solution for the fractional advection-dispersion equation. Adv. Water Resour. 31, 1578–1589 (2008)
    • (2008) Adv. Water Resour. , vol.31 , pp. 1578-1589
    • Huang, Q.1    Huang, G.2    Zhan, H.3
  • 22
    • 19944370478 scopus 로고    scopus 로고
    • The fundamental solution of the space-time fractional advection-dispersion equation
    • Huang, F., Liu, F., et al.: The fundamental solution of the space-time fractional advection-dispersion equation. J. Appl. Math. Comput. 18, 339–350 (2005)
    • (2005) J. Appl. Math. Comput. , vol.18 , pp. 339-350
    • Huang, F.1    Liu, F.2
  • 23
    • 73449097072 scopus 로고    scopus 로고
    • Approximate solution of the fractional advection–dispersion equation
    • Jiang, W., Lin, Y.: Approximate solution of the fractional advection–dispersion equation. Comput. Phy. Commun. 181, 557–561 (2010)
    • (2010) Comput. Phy. Commun. , vol.181 , pp. 557-561
    • Jiang, W.1    Lin, Y.2
  • 24
    • 84862824195 scopus 로고    scopus 로고
    • Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain
    • Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Applic. 389, 1117–1127 (2012)
    • (2012) J. Math. Anal. Applic. , vol.389 , pp. 1117-1127
    • Jiang, H.1    Liu, F.2    Turner, I.3    Burrage, K.4
  • 26
  • 27
    • 84897586371 scopus 로고    scopus 로고
    • A numerical method for the fractional Fitzhugh–Nagumo monodomain model
    • Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh–Nagumo monodomain model. ANZIAM 54, C608–C629 (2012)
    • (2012) ANZIAM , vol.54 , pp. 608-629
    • Liu, F.1    Turner, I.2    Anh, V.3    Yang, Q.4    Burrage, K.5
  • 28
    • 84890879623 scopus 로고    scopus 로고
    • Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V., et al.: Numerical simulation for two–dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. in press
    • Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V., et al.: Numerical simulation for two–dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. in press (2013)
    • (2013) Cent. Eur. J. Phys.
  • 29
    • 84868214613 scopus 로고    scopus 로고
    • Numerical methods and analysis for a class of fractional advection–dispersion models
    • Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)
    • (2012) Comput. Math. Appl. , vol.64 , pp. 2990-3007
    • Liu, F.1    Zhuang, P.2    Burrage, K.3
  • 30
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation
    • Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation. App. Math. Comput. 191, 12–20 (2007)
    • (2007) App. Math. Comput. , vol.191 , pp. 12-20
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 31
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the space fractional Fokker–Planck Equation
    • Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck Equation. J. Comput. Appl. Math. 166, 209–219 (2004)
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 32
    • 79251616666 scopus 로고    scopus 로고
    • An implicit RBF meshless approach for time fractional diffusion equations
    • Liu, Q.X., Gu, Y.T., Zhuang, P.H., Liu, F., Nie, Y.F.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48(1), 1–12 (2011)
    • (2011) Comput. Mech. , vol.48 , Issue.1 , pp. 1-12
    • Liu, Q.X.1    Gu, Y.T.2    Zhuang, P.H.3    Liu, F.4    Nie, Y.F.5
  • 33
    • 77958536189 scopus 로고    scopus 로고
    • A space time spectral methods for the time fractional diffusion equation
    • Li, X., Xu, C.: A space time spectral methods for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 34
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion equations
    • Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion equations. J. Comput. Appl. Math. 172, 65–77 (2004)
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 35
    • 28044468843 scopus 로고    scopus 로고
    • Finite difference approximation for two-sided space-fractional partial differential equations
    • Meerschaert, M.M., Tadjeran, C.: Finite difference approximation for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)
    • (2006) Appl. Numer. Math. , vol.56 , pp. 80-90
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 36
    • 84874387562 scopus 로고    scopus 로고
    • A high order and unconditionally stable scheme for the modified anomalous fractional subdifusion equation with a nonlinear source term
    • Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high order and unconditionally stable scheme for the modified anomalous fractional subdifusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)
    • (2013) J. Comput. Phys. , vol.240 , pp. 36-48
    • Mohebbi, A.1    Abbaszadeh, M.2    Dehghan, M.3
  • 37
    • 84879747673 scopus 로고    scopus 로고
    • The numerical solutions of a two–dimensional space-time Riesz–Caputo fractional diffusion equation
    • Ozdemir, N., Avci, D., Billur Iskender, B.: The numerical solutions of a two–dimensional space-time Riesz–Caputo fractional diffusion equation. Int. J. Optim. Control Theor. Appl. 1, 17–26 (2011)
    • (2011) Int. J. Optim. Control Theor. Appl. , vol.1 , pp. 17-26
    • Ozdemir, N.1    Avci, D.2    Billur Iskender, B.3
  • 38
    • 79952006802 scopus 로고    scopus 로고
    • An analytic algorithm for the space–time fractional advection–dispersion equation
    • Pandey, R.K., Singh, O.P., Baranwal, V.K.: An analytic algorithm for the space–time fractional advection–dispersion equation. Comput. Phy. Commun. 182, 1134–1144 (2011)
    • (2011) Comput. Phy. Commun. , vol.182 , pp. 1134-1144
    • Pandey, R.K.1    Singh, O.P.2    Baranwal, V.K.3
  • 39
    • 10644284401 scopus 로고    scopus 로고
    • Fractional differential equations
    • Podlubny, I.: Fractional differential equations. Academic (1999)
    • (1999) Academic
    • Podlubny, I.1
  • 40
    • 48049106196 scopus 로고    scopus 로고
    • Numerical approximation of a one-dimensional space fractional advection–dispersion equation with boundary layer
    • Roop, J.P.: Numerical approximation of a one-dimensional space fractional advection–dispersion equation with boundary layer. Comput. Math. Appl. 56, 1808–1819 (2008)
    • (2008) Comput. Math. Appl. , vol.56 , pp. 1808-1819
    • Roop, J.P.1
  • 41
    • 42649123789 scopus 로고    scopus 로고
    • Variational solution of the fractional advection dispersion equation
    • Roop, J.P.: Variational solution of the fractional advection dispersion equation, PhD thesis (2004)
    • (2004) PhD thesis
    • Roop, J.P.1
  • 42
    • 80052373676 scopus 로고    scopus 로고
    • The sinc–Legendre collocation method for a class of fractional convection–diffusion equations with variable coefficients
    • Saadatmandi, A., Dehghan, M., Azizi, M.R.: The sinc–Legendre collocation method for a class of fractional convection–diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simulat. 17, 593–601 (2012)
    • (2012) Commun. Nonlinear Sci. Numer. Simulat. , vol.17 , pp. 593-601
    • Saadatmandi, A.1    Dehghan, M.2    Azizi, M.R.3
  • 43
    • 79960977916 scopus 로고    scopus 로고
    • A tau approach for solution of the space fractional diffusion equation
    • Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62, 1135–1142 (2011)
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1135-1142
    • Saadatmandi, A.1    Dehghan, M.2
  • 44
    • 76449102580 scopus 로고    scopus 로고
    • Adomian’s decomposition method for solving an intermediate fractional advection–dispersion equation
    • El–Sayed, A.M.A., Behiry, S.H., Raslan, W.E.: Adomian’s decomposition method for solving an intermediate fractional advection–dispersion equation. Comput. Math. Appl. 59, 1759–1765 (2010)
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1759-1765
    • El–Sayed, A.M.A.1    Behiry, S.H.2    Raslan, W.E.3
  • 46
    • 57649137996 scopus 로고    scopus 로고
    • The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation
    • Shen, S., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation. IMA J. Appl. Math. 73, 850–872 (2008)
    • (2008) IMA J. Appl. Math. , vol.73 , pp. 850-872
    • Shen, S.1    Anh, V.2    Turner, I.3
  • 47
    • 79951851714 scopus 로고    scopus 로고
    • Numerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equation
    • Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equation. Numer. Algor. 56, 383–403 (2011)
    • (2011) Numer. Algor. , vol.56 , pp. 383-403
    • Shen, S.1    Liu, F.2    Anh, V.3
  • 48
    • 64049113904 scopus 로고    scopus 로고
    • Finite difference approximations for a fractional advection-diffusion problem
    • Sousa, E.: Finite difference approximations for a fractional advection-diffusion problem. J. Comput. Phys. 228, 4038–4054 (2009)
    • (2009) J. Comput. Phys. , vol.228 , pp. 4038-4054
    • Sousa, E.1
  • 49
    • 78649918171 scopus 로고    scopus 로고
    • Finite difference methods for fractional dispersion equations
    • Su, L., Wang, W., Xu, Q.: Finite difference methods for fractional dispersion equations. Appl. Math. Comput. 216, 3329–3334 (2010)
    • (2010) Appl. Math. Comput. , vol.216 , pp. 3329-3334
    • Su, L.1    Wang, W.2    Xu, Q.3
  • 50
    • 79957886188 scopus 로고    scopus 로고
    • A fast characteristic finite difference method for fractional advection–diffusion equations
    • Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection–diffusion equations. Adv. Water Resour. 34, 810–816 (2011)
    • (2011) Adv. Water Resour. , vol.34 , pp. 810-816
    • Wang, K.1    Wang, H.2
  • 51
    • 84939891840 scopus 로고    scopus 로고
    • Novel numerical methods for time-space fractional reaction–diffusion equations in two domains
    • Yang, Q., Moroney, T., Burrage, K., Turner, I., Liu, F.: Novel numerical methods for time-space fractional reaction–diffusion equations in two domains. J. ANZIAM 52, 461–473 (2004)
    • (2004) J. ANZIAM , vol.52 , pp. 461-473
    • Yang, Q.1    Moroney, T.2    Burrage, K.3    Turner, I.4    Liu, F.5
  • 52
    • 84896693098 scopus 로고    scopus 로고
    • Analytical and numerical solutions for the time and space-symmetric fractional diffusion equation
    • Yang, Q., Turner, I., Liu, F.: Analytical and numerical solutions for the time and space-symmetric fractional diffusion equation. J. ANZIAM 50, 800–814 (2009)
    • (2009) J. ANZIAM , vol.50 , pp. 800-814
    • Yang, Q.1    Turner, I.2    Liu, F.3
  • 53
    • 69249214155 scopus 로고    scopus 로고
    • Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
    • Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)
    • (2010) Appl. Math. Model. , vol.34 , pp. 200-218
    • Yang, Q.1    Liu, F.2    Turner, I.3
  • 54
    • 76449122108 scopus 로고    scopus 로고
    • A note on the finite element method for the space–fractional advection diffusion equation
    • Zheng, Y., Li, C., Zhao, Z.: A note on the finite element method for the space–fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2010)
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1718-1726
    • Zheng, Y.1    Li, C.2    Zhao, Z.3
  • 55
    • 84907893973 scopus 로고    scopus 로고
    • Numerical methods for the variable–order fractional advection–diffusion with a nonlinear source term
    • Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable–order fractional advection–diffusion with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.