-
1
-
-
0020765202
-
A theoretical basis for the application of fractional calculus to viscoelasticity
-
Bagley R., Torvik P. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27:201-210.
-
(1983)
J. Rheol.
, vol.27
, pp. 201-210
-
-
Bagley, R.1
Torvik, P.2
-
2
-
-
36149001420
-
A Fourier method for the fractional diffusion equation describing sub-diffusion
-
Chen C.M., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
3
-
-
40849115179
-
Finite difference method and a Fourier analysis for the fractional reaction-subdiffusion equation
-
Chen C.M., Liu F., Brruage K. Finite difference method and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 2008, 198:754-762.
-
(2008)
Appl. Math. Comput.
, vol.198
, pp. 754-762
-
-
Chen, C.M.1
Liu, F.2
Brruage, K.3
-
4
-
-
56949093590
-
A Fourier method an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative
-
Chen C.M., Liu F., Anh V. A Fourier method an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math. 2009, 223:777-789.
-
(2009)
J. Comput. Appl. Math.
, vol.223
, pp. 777-789
-
-
Chen, C.M.1
Liu, F.2
Anh, V.3
-
5
-
-
79960976703
-
Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes first problem for a heated generalized second grade fluid
-
Chen C.M., Liu F., Turner I., Anh V. Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes first problem for a heated generalized second grade fluid. Comput. Math. Appl. 2011, 62:971-986.
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 971-986
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
6
-
-
77950690888
-
Numerical schemes and multivariate extrapolation of a two-dimensional anomalous subdiffusion equation
-
Chen C.M., Liu F., Turner I., Anh V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous subdiffusion equation. Numer. Algorithms 2010, 54:1-21.
-
(2010)
Numer. Algorithms
, vol.54
, pp. 1-21
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
7
-
-
84858987832
-
Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation
-
Chen C.M., Liu F., Turner I., Anh V. Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Math. Comput. 2012, 81:345-366.
-
(2012)
Math. Comput.
, vol.81
, pp. 345-366
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
8
-
-
69049086472
-
Compact finite difference method for the fractional diffusion equation
-
Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 7792-7804
-
-
Cui, M.1
-
9
-
-
76649094637
-
Solving nonlinear fractional partial differential equations using the homotopy analysis method
-
Dehghan M., Manafian J., Saadatmandi A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 2010, 26:448-479.
-
(2010)
Numer. Methods Partial Differ. Equ.
, vol.26
, pp. 448-479
-
-
Dehghan, M.1
Manafian, J.2
Saadatmandi, A.3
-
10
-
-
0037081673
-
Analysis of fractional differential equations
-
Diethelm K., Ford N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265:229-248.
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
11
-
-
77952888765
-
A compact difference scheme for the fractional diffusion-wave equation
-
Du R., Cao W.R., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 2998-3007
-
-
Du, R.1
Cao, W.R.2
Sun, Z.Z.3
-
12
-
-
79953684270
-
A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations
-
Esmaeili S., Shamsi M. A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16:3646-3654.
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 3646-3654
-
-
Esmaeili, S.1
Shamsi, M.2
-
14
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
Liu F., Anh V., Turner I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
15
-
-
34547673244
-
Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
-
Liu F., Zhuang P., Anh V., Turner I., Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 2007, 191:12-20.
-
(2007)
Appl. Math. Comput.
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
16
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
17
-
-
79955115806
-
Finite element approximation for a modified anomalous subdiffusion equation
-
Liu Q., Liu F., Turner I., Anh V. Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 2011, 35:4103-4116.
-
(2011)
Appl. Math. Model.
, vol.35
, pp. 4103-4116
-
-
Liu, Q.1
Liu, F.2
Turner, I.3
Anh, V.4
-
18
-
-
4043151477
-
The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
-
Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 2004, 37:R161-208.
-
(2004)
J. Phys. A
, vol.37
-
-
Metzler, R.1
Klafter, J.2
-
20
-
-
61449085393
-
Computational algorithms for computing the fractional derivatives of functions
-
Odibat Z.M. Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simul. 2009, 79:2013-2020.
-
(2009)
Math. Comput. Simul.
, vol.79
, pp. 2013-2020
-
-
Odibat, Z.M.1
-
24
-
-
80155210277
-
A Legendre collocation method for fractional integrodifferential equations
-
Saadatmandi A., Dehghan M. A Legendre collocation method for fractional integrodifferential equations. J. Vib. Control 2011, 17:2050-2058.
-
(2011)
J. Vib. Control
, vol.17
, pp. 2050-2058
-
-
Saadatmandi, A.1
Dehghan, M.2
-
25
-
-
84861716404
-
The Sinc-Legendre collocation method for a class of fractional convection-diffusion equation with variable coefficients
-
Saadatmandi A., Dehghan M., Azizi M.R. The Sinc-Legendre collocation method for a class of fractional convection-diffusion equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 2012, 17:4125-4136.
-
(2012)
Commun. Nonlinear Sci. Numer. Simul.
, vol.17
, pp. 4125-4136
-
-
Saadatmandi, A.1
Dehghan, M.2
Azizi, M.R.3
-
26
-
-
74249095517
-
A new operational matrix for solving fractional-order differential equations
-
Saadatmandi A., Dehghan M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59:1326-1336.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1326-1336
-
-
Saadatmandi, A.1
Dehghan, M.2
-
27
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Sun Z.Z., Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.Z.1
Wu, X.2
-
28
-
-
31744438550
-
A second-order accurate numerical approximation for the fractional diffusion equation
-
Tadjeran C., Meerschaert M.M., Scheffler H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffler, H.P.3
-
29
-
-
0009481303
-
The fractional diffusion equation
-
Wess W. The fractional diffusion equation. J. Math. Phys. 1996, 27:2782-2785.
-
(1996)
J. Math. Phys.
, vol.27
, pp. 2782-2785
-
-
Wess, W.1
-
30
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-tape stability analysis for fractional diffusion equations
-
Yuste S.B., Acedo L. An explicit finite difference method and a new von Neumann-tape stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
31
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation
-
Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
|