-
4
-
-
77955281742
-
Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients
-
Prez Guerrero J.S., Skaggs T.H. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients. Journal of Hydrology 2010, 390:57-65.
-
(2010)
Journal of Hydrology
, vol.390
, pp. 57-65
-
-
Prez Guerrero, J.S.1
Skaggs, T.H.2
-
5
-
-
55649099424
-
A finite element solution for fractional advection-dispersion equation
-
Huang Q., Huang G., Zhan H. A finite element solution for fractional advection-dispersion equation. Advances in Water Resources 2008, 31:1578-1589.
-
(2008)
Advances in Water Resources
, vol.31
, pp. 1578-1589
-
-
Huang, Q.1
Huang, G.2
Zhan, H.3
-
6
-
-
76449102580
-
Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation
-
El-Sayed A.M.A., Behiry S.H., Raslan W.E. Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation. Computer and Mathematics with Applications 2010, 59:1759-1765.
-
(2010)
Computer and Mathematics with Applications
, vol.59
, pp. 1759-1765
-
-
El-Sayed, A.M.A.1
Behiry, S.H.2
Raslan, W.E.3
-
7
-
-
85112254161
-
Numerical solutions of the space-time fractional advection-dispersion equation
-
Momani S., Odibat Z. Numerical solutions of the space-time fractional advection-dispersion equation. Numerical Methods for Partial Differential Equations 2008, 25(5):1238-1259.
-
(2008)
Numerical Methods for Partial Differential Equations
, vol.25
, Issue.5
, pp. 1238-1259
-
-
Momani, S.1
Odibat, Z.2
-
8
-
-
71549148064
-
Homotopy perturbation method for solving the space-time fractional advection-dispersion equation
-
Yildirim A., Kocak H. Homotopy perturbation method for solving the space-time fractional advection-dispersion equation. Advances in Water Resources 2009, 32:1711-1716.
-
(2009)
Advances in Water Resources
, vol.32
, pp. 1711-1716
-
-
Yildirim, A.1
Kocak, H.2
-
10
-
-
0348230399
-
Time fractional advection-dispersion equation
-
Liu F., Anh V.V., Turner I., Zhuang P. Time fractional advection-dispersion equation. Journal of Applied Mathematics and Computing 2003, 13:233-245.
-
(2003)
Journal of Applied Mathematics and Computing
, vol.13
, pp. 233-245
-
-
Liu, F.1
Anh, V.V.2
Turner, I.3
Zhuang, P.4
-
11
-
-
19944370478
-
The fundamental solution of the space-time fractional advection-dispersion equation
-
Huang F., Liu F. The fundamental solution of the space-time fractional advection-dispersion equation. Journal of Applied Mathematics and Computing 2005, 18:339-350.
-
(2005)
Journal of Applied Mathematics and Computing
, vol.18
, pp. 339-350
-
-
Huang, F.1
Liu, F.2
-
12
-
-
0000206373
-
Application of the Hirota bilinear formalism to a new integrable differential-difference equation
-
Hu X.B., Wu Y.T. Application of the Hirota bilinear formalism to a new integrable differential-difference equation. Physics Letters A 1998, 246:523-529.
-
(1998)
Physics Letters A
, vol.246
, pp. 523-529
-
-
Hu, X.B.1
Wu, Y.T.2
-
14
-
-
0001402844
-
Two applications of the homogeneous balance method
-
Fan E. Two applications of the homogeneous balance method. Physics Letters A 2000, 256:353-357.
-
(2000)
Physics Letters A
, vol.256
, pp. 353-357
-
-
Fan, E.1
-
15
-
-
0037411678
-
A Bäcklund transformation and their inverse scatting transform method for the generalized Vakhnenko equation
-
Vakhnenko V.O., Parkes E.J., Morrision A.J. A Bäcklund transformation and their inverse scatting transform method for the generalized Vakhnenko equation. Chaos, Solitons and Fractals 2003, 17:683-692.
-
(2003)
Chaos, Solitons and Fractals
, vol.17
, pp. 683-692
-
-
Vakhnenko, V.O.1
Parkes, E.J.2
Morrision, A.J.3
-
16
-
-
55549139469
-
Analysis of nonlinear fractional partial differential equations with the homotopy analysis method
-
Xu H., Liao S.J., You X.C. Analysis of nonlinear fractional partial differential equations with the homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation 2009, 14:1152-1156.
-
(2009)
Communications in Nonlinear Science and Numerical Simulation
, vol.14
, pp. 1152-1156
-
-
Xu, H.1
Liao, S.J.2
You, X.C.3
-
17
-
-
34250668369
-
Variational iteration method-Some recent results and new interpretations
-
He J.H. Variational iteration method-Some recent results and new interpretations. Journal of Computational and Applied Mathematics 2007, 207(1):3-17.
-
(2007)
Journal of Computational and Applied Mathematics
, vol.207
, Issue.1
, pp. 3-17
-
-
He, J.H.1
-
19
-
-
39449122795
-
Generalized differential transform method: application to differential equations of fractional order
-
Odibat Z., Momani S., Erturk V.S. Generalized differential transform method: application to differential equations of fractional order. Applied Mathematics and Computation 2008, 197:467-477.
-
(2008)
Applied Mathematics and Computation
, vol.197
, pp. 467-477
-
-
Odibat, Z.1
Momani, S.2
Erturk, V.S.3
-
21
-
-
79951959074
-
A study on the multi-order time fractional differential equations with using homotopy perturbation method
-
Golbabai A., Sayevand K. A study on the multi-order time fractional differential equations with using homotopy perturbation method. Nonlinear Science Letters A 2010, 2:141-147.
-
(2010)
Nonlinear Science Letters A
, vol.2
, pp. 141-147
-
-
Golbabai, A.1
Sayevand, K.2
-
22
-
-
67349159410
-
Modified homotopy perturbation method for solving system of linear Fredholm integral equations
-
Javidi M. Modified homotopy perturbation method for solving system of linear Fredholm integral equations. Mathematical and Computer Modelling 2009, 50:159-165.
-
(2009)
Mathematical and Computer Modelling
, vol.50
, pp. 159-165
-
-
Javidi, M.1
-
23
-
-
67349144675
-
Fourth-order and fifth-order iterative methods for nonlinear algebraic equations
-
Javidi M. Fourth-order and fifth-order iterative methods for nonlinear algebraic equations. Mathematical and Computer Modelling 2009, 50:66-71.
-
(2009)
Mathematical and Computer Modelling
, vol.50
, pp. 66-71
-
-
Javidi, M.1
-
24
-
-
67249166170
-
An algorithm for solving the fractional nonlinear Schördinger equation by means of the homotopy perturbation method
-
Yildirim A. An algorithm for solving the fractional nonlinear Schördinger equation by means of the homotopy perturbation method. International Journal of Nonlinear Sciences and Numerical Simulation 2009, 10:445-450.
-
(2009)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.10
, pp. 445-450
-
-
Yildirim, A.1
-
25
-
-
77955858024
-
A note on the homotopy perturbation method
-
He J.H. A note on the homotopy perturbation method. Thermal Science 2010, 14(2):565-568.
-
(2010)
Thermal Science
, vol.14
, Issue.2
, pp. 565-568
-
-
He, J.H.1
-
26
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results
-
Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results. Computers and Mathematics with Applications 2006, 51:1367-1376.
-
(2006)
Computers and Mathematics with Applications
, vol.51
, pp. 1367-1376
-
-
Jumarie, G.1
-
27
-
-
57049186538
-
Table of some basic fractional calculus formulate derived from a modified Riemann-Liouville derivative for non-differentiable functions
-
Jumarie G. Table of some basic fractional calculus formulate derived from a modified Riemann-Liouville derivative for non-differentiable functions. Applied Mathematics Letters 2009, 22:378-385.
-
(2009)
Applied Mathematics Letters
, vol.22
, pp. 378-385
-
-
Jumarie, G.1
-
28
-
-
77953478412
-
Fractional calculus of variations in fractal space time
-
Wu G.C., He J.H. Fractional calculus of variations in fractal space time. Nonlinear Science Letters A 2010, 1:281-287.
-
(2010)
Nonlinear Science Letters A
, vol.1
, pp. 281-287
-
-
Wu, G.C.1
He, J.H.2
-
29
-
-
77953478991
-
Fractional variational iteration method and its application
-
Wu G.C., Lee E.W.M. Fractional variational iteration method and its application. Physics Letters A 2010, 374:2506-2509.
-
(2010)
Physics Letters A
, vol.374
, pp. 2506-2509
-
-
Wu, G.C.1
Lee, E.W.M.2
-
30
-
-
82955223413
-
-
Fractional variational iteration method via modified Riemann-Liouville derivative. doi:10.1016/j.jksus.2010.07.025
-
N. Faraz, Y. Khan, H. Jafari, M. Madani, Fractional variational iteration method via modified Riemann-Liouville derivative. doi:10.1016/j.jksus.2010.07.025.
-
-
-
Faraz, N.1
Khan, Y.2
Jafari, H.3
Madani, M.4
-
32
-
-
55649102766
-
Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part
-
Hosseinnia S.H., Ranjbar A., Momani S. Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part. Computer and Mathematics with Applications 2008, 56:3138-3149.
-
(2008)
Computer and Mathematics with Applications
, vol.56
, pp. 3138-3149
-
-
Hosseinnia, S.H.1
Ranjbar, A.2
Momani, S.3
-
33
-
-
64449088045
-
Convergence of the homotopy perturbation method for partial differential equation
-
Biazar J., Ghazvini H. Convergence of the homotopy perturbation method for partial differential equation. NonLinear Analysis: Real World Application 2009, 10:2633-2640.
-
(2009)
NonLinear Analysis: Real World Application
, vol.10
, pp. 2633-2640
-
-
Biazar, J.1
Ghazvini, H.2
-
34
-
-
0347450513
-
A new algorithm for calculating Adomian polynomials for nonlinear operator
-
Wazwaz A. A new algorithm for calculating Adomian polynomials for nonlinear operator. Applied Mathematics and Computation 2000, 111:53-69.
-
(2000)
Applied Mathematics and Computation
, vol.111
, pp. 53-69
-
-
Wazwaz, A.1
-
35
-
-
55349110254
-
Response and stability of a SDOF strongly nonlinear stochastic system with high damping modeled by a fractional derivative
-
Huang Z.L., Jin X.L. Response and stability of a SDOF strongly nonlinear stochastic system with high damping modeled by a fractional derivative. Journal of Sound and Vibration 2009, 319:1121-1135.
-
(2009)
Journal of Sound and Vibration
, vol.319
, pp. 1121-1135
-
-
Huang, Z.L.1
Jin, X.L.2
|