-
1
-
-
0002898176
-
Fractional calculus and continuous time finance, III. The diffusion limit
-
Birkhäuser Basel
-
R. Gorenflo, F. Mainardi, E. Scalas, and M. Roberto Fractional calculus and continuous time finance, III. The diffusion limit Math. Finance Konstanz, 2000 Trends Math. 2001 Birkhäuser Basel 171 180
-
(2001)
Math. Finance
, pp. 171-180
-
-
Gorenflo, R.1
Mainardi, F.2
Scalas, E.3
Roberto, M.4
-
2
-
-
0036949980
-
Waiting-times and returns in high frequency financial data: An empirical study
-
M. Roberto, E. Scalas, and F. Mainardi Waiting-times and returns in high frequency financial data: an empirical study Phys. A 314 2002 749 755
-
(2002)
Phys. A
, vol.314
, pp. 749-755
-
-
Roberto, M.1
Scalas, E.2
Mainardi, F.3
-
3
-
-
0042808444
-
Waiting time distributions in financial markets
-
L. Sabatelli, S. Keating, J. Dudley, and P. Richmond Waiting time distributions in financial markets Eur. Phys. J. B 27 2002 273 275 (Pubitemid 135695362)
-
(2002)
European Physical Journal B
, vol.27
, Issue.2
, pp. 273-275
-
-
Sabatelli, L.1
Keating, S.2
Dudley, J.3
Richmond, P.4
-
8
-
-
0001805106
-
Discrete time fractional-order controllers
-
J.T. Mechado Discrete time fractional-order controllers Fract. Calc. Appl. Anal. 4 2001 47 66
-
(2001)
Fract. Calc. Appl. Anal.
, vol.4
, pp. 47-66
-
-
Mechado, J.T.1
-
9
-
-
73449097072
-
Approximate solution of the fractional advection-dispersion equation
-
Yingzhen Lin, and Wei Jiang Approximate solution of the fractional advection-dispersion equation Comput. Phys. Commun. 181 2010 557 561
-
(2010)
Comput. Phys. Commun.
, vol.181
, pp. 557-561
-
-
Lin, Y.1
Jiang, W.2
-
10
-
-
19944370478
-
The fundamental solution of the space-time fractional advection-dispersion equation
-
F. Huang, and F. Liu The fundamental solution of the space-time fractional advection-dispersion J. Appl. Math. Comput. 18 2005 339 350 (Pubitemid 40756906)
-
(2005)
Journal of Applied Mathematics and Computing
, vol.18
, Issue.1-2
, pp. 339-350
-
-
Huang, F.1
Liu, F.2
-
11
-
-
0035014974
-
Subordinated advection-dispersion equation for contaminant transport
-
DOI 10.1029/2000WR900409
-
B. Baeumer, M.M. Meerschaert, D.A. Benson, and S.W. Wheatcraft Subordinate advection-dispersion equation for contaminant transport Water Resource Res. 37 2001 1543 1550 (Pubitemid 32480655)
-
(2001)
Water Resources Research
, vol.37
, Issue.6
, pp. 1543-1550
-
-
Baeumer, B.1
Benson, D.A.2
Meerschaert, M.M.3
Wheatcraft, S.W.4
-
12
-
-
0035130739
-
Eulerian derivation of the fractional advection-dispersion equation
-
DOI 10.1016/S0169-7722(00)00170-4, PII S0169772200001704
-
R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer, and S.W. Wheatcraft Eulerian derivation of the fractional advection-dispersion equation J. Contaminant Hydrol. 48 2001 69 88 (Pubitemid 32141059)
-
(2001)
Journal of Contaminant Hydrology
, vol.48
, Issue.1-2
, pp. 69-88
-
-
Schumer, R.1
Benson, D.A.2
Meerschaert, M.M.3
Wheatcraft, S.W.4
-
14
-
-
1242344799
-
Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient test
-
P. Riemus, G. Pohll, T. Mihevc, J. Chapman, M. Haga, B. Lyles, S. Kosinski, R. Niswonger, and P. Sanders Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient test Water Resource Res. 39 2003 1356 1370
-
(2003)
Water Resource Res.
, vol.39
, pp. 1356-1370
-
-
Riemus, P.1
Pohll, G.2
Mihevc, T.3
Chapman, J.4
Haga, M.5
Lyles, B.6
Kosinski, S.7
Niswonger, R.8
Sanders, P.9
-
15
-
-
4043151477
-
The restaurant at the end of random walk: Recent developments in the description of anomalous transport by fractional dynamics
-
R. Metzler, and J. Klafter The restaurant at the end of random walk: Recent developments in the description of anomalous transport by fractional dynamics J. Phys. A 37 2004 R161 R208
-
(2004)
J. Phys. A
, vol.37
-
-
Metzler, R.1
Klafter, J.2
-
16
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, and J. Klafter The random walk's guide to anomalous diffusion: A fractional dynamics approach Phys. Rep. 339 2000 1 77
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
17
-
-
0034032484
-
Application of a fractional advection-dispersion equation
-
DOI 10.1029/2000WR900031
-
D.A. Benson, S.W. Wheatcraft, and M.M. Meerschaaert Application of a fractional advection-dispersion equation Water Resource Res. 36 6 2000 1403 1412 (Pubitemid 30334241)
-
(2000)
Water Resources Research
, vol.36
, Issue.6
, pp. 1403-1412
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
19
-
-
34547673244
-
Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
-
DOI 10.1016/j.amc.2006.08.162, PII S0096300306012100
-
F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation Appl. Math. Comput. 191 2007 12 20 (Pubitemid 47223382)
-
(2007)
Applied Mathematics and Computation
, vol.191
, Issue.1
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
20
-
-
0942266745
-
Numerical solution of three-dimensional advection-diffusion equation
-
M. Dehghan Numerical solution of three-dimensional advection-diffusion equation Appl. Math. Comput. 150 2004 5 19
-
(2004)
Appl. Math. Comput.
, vol.150
, pp. 5-19
-
-
Dehghan, M.1
-
21
-
-
0032644351
-
Fully implicit finite difference methods for two-dimensional diffusion with a non-local boundary condition
-
M. Dehghan Fully implicit finite difference methods for two-dimensional diffusion with a non-local boundary condition J. Comput. Appl. Math. 106 1999 255 269
-
(1999)
J. Comput. Appl. Math.
, vol.106
, pp. 255-269
-
-
Dehghan, M.1
-
22
-
-
0036466644
-
Fully explicit finite-difference methods for two-dimensional diffusion with an integral condition
-
DOI 10.1016/S0362-546X(00)00172-3, PII S0362546X00001723
-
M. Dehghan Fully explicit finite difference methods for two-dimensional diffusion with an integral condition Nonlinear Anal. Theory Methods Appl. 48 2002 637 650 (Pubitemid 33103594)
-
(2002)
Nonlinear Analysis, Theory, Methods and Applications
, vol.48
, Issue.5
, pp. 637-650
-
-
Dehghan, M.1
-
23
-
-
76449102580
-
Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation
-
A.M.A. El-Sayed, S.H. Behiry, and W.E. Raslan Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation Comput. Math. Appl. 59 2010 1759 1765
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1759-1765
-
-
El-Sayed, A.M.A.1
Behiry, S.H.2
Raslan, W.E.3
-
25
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
J.H. He Approximate analytical solution for seepage flow with fractional derivatives in porous media Comput. Methods Appl. Mech. Engrg. 167 1998 57 68
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
26
-
-
77954459409
-
Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems
-
S. Abbasbandy, and A. Shirzadi Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems Numer. Algorithms 54 2010 521 532
-
(2010)
Numer. Algorithms
, vol.54
, pp. 521-532
-
-
Abbasbandy, S.1
Shirzadi, A.2
-
27
-
-
70350734487
-
Homotopy analysis method for the Kawahara equation
-
S. Abbasbandy Homotopy analysis method for the Kawahara equation Nonlinear Anal. Real World Appl. 11 2010 307 312
-
(2010)
Nonlinear Anal. Real World Appl.
, vol.11
, pp. 307-312
-
-
Abbasbandy, S.1
-
28
-
-
38649139314
-
Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method
-
DOI 10.1016/j.cej.2007.03.022, PII S1385894707001672
-
S. Abbasbandy Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method Chem. Eng. J. 136 2008 144 150 (Pubitemid 351173865)
-
(2008)
Chemical Engineering Journal
, vol.136
, Issue.2-3
, pp. 144-150
-
-
Abbasbandy, S.1
-
29
-
-
38149090283
-
Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method
-
M. Dehghan, and F. Shakeri Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method PIER 78 2008 361
-
(2008)
PIER
, vol.78
, pp. 361
-
-
Dehghan, M.1
Shakeri, F.2
-
30
-
-
34249315091
-
Solution of a partial differential equation subject to temperature overspecification by He's homotopy perturbation method
-
M. Dehghan, and F. Shakeri Solution of a partial differential equation subject to temperature overspecification by He's homotopy perturbation method Phys. Scripta 75 2007 778
-
(2007)
Phys. Scripta
, vol.75
, pp. 778
-
-
Dehghan, M.1
Shakeri, F.2
-
31
-
-
34347219776
-
Inverse problem of diffusion equation by He's homotopy perturbation method
-
F. Shakeri, and M. Dehghan Inverse problem of diffusion equation by He's homotopy perturbation method Phys. Scripta 75 2007 551
-
(2007)
Phys. Scripta
, vol.75
, pp. 551
-
-
Shakeri, F.1
Dehghan, M.2
-
32
-
-
2142755490
-
Numerical solution of fractional advection-dispersion equation
-
DOI 10.1061/(ASCE)0733-9429(2004)130:5(422)
-
Z. Deng, V.P. Singh, and L. Bengtsson Numerical solution of fractional advection-dispersion equation J. Hydraul. Eng. 130 5 2004 422 431 (Pubitemid 38554545)
-
(2004)
Journal of Hydraulic Engineering
, vol.130
, Issue.5
, pp. 422-431
-
-
Deng, Z.-Q.1
Singh, V.P.2
Bengtsson, L.3
-
33
-
-
0032647143
-
Discrete random walk models for symmetric Lévy-Feller diffusion process
-
R. Gorenflo, G. de Fabritiis, and F. Mainardi Discrete random walk models for symmetric Lévy-Feller diffusion process Phys. A 269 1 1999 79 89
-
(1999)
Phys. A
, vol.269
, Issue.1
, pp. 79-89
-
-
Gorenflo, R.1
De Fabritiis, G.2
Mainardi, F.3
-
34
-
-
0036828301
-
Discrete random walk models for space-time fractional diffusion
-
R. Gorenflo, G. de Fabritiis, F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi Discrete random walk models for space-time fractional diffusion Chem. Phys. 284 2002 521 541
-
(2002)
Chem. Phys.
, vol.284
, pp. 521-541
-
-
Gorenflo, R.1
De Fabritiis, G.2
Mainardi, F.3
Moretti, D.4
Pagnini, G.5
Paradisi, P.6
-
35
-
-
0345448323
-
Numerical methods for the solution of partial differential equations of fractional order
-
DOI 10.1016/j.jcp.2003.07.008
-
V.E. Lynch, B.A. Carreras, D. del-Castillo-Negrete, K.M. Ferreira-Mejias, and H.R. Hicks Numerical method for the solution of partial differential equations of fractional order J. Comput. Phys. 192 2 2003 406 421 (Pubitemid 37445638)
-
(2003)
Journal of Computational Physics
, vol.192
, Issue.2
, pp. 406-421
-
-
Lynch, V.E.1
Carreras, B.A.2
Del-Castillo-Negrete, D.3
Ferreira-Mejias, K.M.4
Hicks, H.R.5
-
36
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
M.M. Meerschaaert, and C. Tedjeran Finite difference approximations for fractional advection-dispersion flow equations J. Comput. Appl. Math. 172 1 2004 65 77
-
(2004)
J. Comput. Appl. Math.
, vol.172
, Issue.1
, pp. 65-77
-
-
Meerschaaert, M.M.1
Tedjeran, C.2
-
37
-
-
28044468843
-
Finite difference approximations for two-sided space fractional partial differential equations
-
M.M. Meerschaaert, and C. Tedjeran Finite difference approximations for two-sided space fractional partial differential equations Appl. Numer. Math. 56 1 2006 80 90
-
(2006)
Appl. Numer. Math.
, vol.56
, Issue.1
, pp. 80-90
-
-
Meerschaaert, M.M.1
Tedjeran, C.2
-
38
-
-
33646191893
-
Computational aspects of FEM approximation of fractional advection-dispersion equations on bounded domain in R2
-
J.P. Roop Computational aspects of FEM approximation of fractional advection-dispersion equations on bounded domain in R 2 J. Comput. Appl. Math. 193 1 2006 243 268
-
(2006)
J. Comput. Appl. Math.
, vol.193
, Issue.1
, pp. 243-268
-
-
Roop, J.P.1
-
39
-
-
33847315613
-
The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: Defining the fractional dispersive flux with the Caputo derivatives
-
DOI 10.1016/j.advwatres.2006.11.002, PII S0309170806002077
-
X. Zhang, M. Lv, J.W. Crawford, and I.M. Young The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the Caputo derivatives Adv. Water Resource 30 5 2007 1205 1217 (Pubitemid 46323434)
-
(2007)
Advances in Water Resources
, vol.30
, Issue.5
, pp. 1205-1217
-
-
Zhang, X.1
Lv, M.2
Crawford, J.W.3
Young, I.M.4
-
40
-
-
84977255207
-
Linear models of dissipation whose Q is always frequency independent-II
-
M. Caputo Linear models of dissipation whose Q is always frequency independent-II Geo. Phys. J. Roy. Astr. Soc. 13 5 1967 529 539
-
(1967)
Geo. Phys. J. Roy. Astr. Soc.
, vol.13
, Issue.5
, pp. 529-539
-
-
Caputo, M.1
-
41
-
-
0000930143
-
A new dissipation model based on memory mechanism
-
M. Caputo, and F. Mainardi A new dissipation model based on memory mechanism Pure Appl. Geophys. 91 8 1971 134 147
-
(1971)
Pure Appl. Geophys.
, vol.91
, Issue.8
, pp. 134-147
-
-
Caputo, M.1
Mainardi, F.2
-
42
-
-
33745869026
-
Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
-
DOI 10.1007/s00397-005-0043-5
-
N. Heymans, and I. Podlubny Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives Rheol. Acta 2006 765 771 (Pubitemid 44027219)
-
(2006)
Rheologica Acta
, vol.45
, Issue.5
, pp. 765-771
-
-
Heymans, N.1
Podlubny, I.2
-
43
-
-
33847309315
-
Theory and Applications of Fractional Differential Equations
-
Elsevier Boston
-
A. Kilbas, H.M. Srivatava, and J.J. Trujillo Theory and Applications of Fractional Differential Equations North-Holland Math. Stud. vol. 204 2006 Elsevier Boston
-
(2006)
North-Holland Math. Stud.
, vol.204
-
-
Kilbas, A.1
Srivatava, H.M.2
Trujillo, J.J.3
-
44
-
-
34247212711
-
Remarks on fractional derivatives
-
C. Li, and W. Deng Remarks on fractional derivatives Appl. Math. Comput. 187 2 2007 777 787
-
(2007)
Appl. Math. Comput.
, vol.187
, Issue.2
, pp. 777-787
-
-
Li, C.1
Deng, W.2
-
48
-
-
34848900880
-
A general approach to obtain series solutions of nonlinear differential equations
-
S.J. Liao, and Y. Tan A general approach to obtain series solutions of nonlinear differential equations Stud. Appl. Math. 119 2007 297 355
-
(2007)
Stud. Appl. Math.
, vol.119
, pp. 297-355
-
-
Liao, S.J.1
Tan, Y.2
-
50
-
-
56249110637
-
Numerical solutions of the space-time fractional advection dispersion equation
-
S. Momani, and Z. Odibat Numerical solutions of the space-time fractional advection dispersion equation Numer. Methods Partial Differential Equations 24 2008 1416 1429
-
(2008)
Numer. Methods Partial Differential Equations
, vol.24
, pp. 1416-1429
-
-
Momani, S.1
Odibat, Z.2
|