메뉴 건너뛰기




Volumn 69, Issue , 2015, Pages 60-79

Many regression algorithms, one unified model: A review

Author keywords

Gaussian mixture regression; Gaussian process regression; Locally weighted regression; Radial basis function networks; Regression

Indexed keywords

ALGORITHMS; FUNCTIONS; NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 84931291727     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2015.05.005     Document Type: Review
Times cited : (170)

References (75)
  • 1
    • 85083953791 scopus 로고    scopus 로고
    • What regularized auto-encoders learn from the data generating distribution.
    • Alain, G., & Bengio, Y. (2013). What regularized auto-encoders learn from the data generating distribution. arxiv:1211.4246v4.
    • (2013)
    • Alain, G.1    Bengio, Y.2
  • 2
    • 0029411915 scopus 로고
    • Memory-based neural networks for robot learning
    • Atkeson C.G., Schaal S. Memory-based neural networks for robot learning. Neurocomputing 1995, 9(3):243-269.
    • (1995) Neurocomputing , vol.9 , Issue.3 , pp. 243-269
    • Atkeson, C.G.1    Schaal, S.2
  • 15
    • 78651492935 scopus 로고    scopus 로고
    • Incremental local online Gaussian mixture regression for imitation learning of multiple tasks
    • In IEEE/RSJ international conference on intelligent robots and systems.
    • Cederborg, T., Li, M., Baranes, A., & Oudeyer, P.-Y. (2010). Incremental local online Gaussian mixture regression for imitation learning of multiple tasks. In IEEE/RSJ international conference on intelligent robots and systems (pp. 267-274).
    • (2010) , pp. 267-274
    • Cederborg, T.1    Li, M.2    Baranes, A.3    Oudeyer, P.-Y.4
  • 16
    • 0036083110 scopus 로고    scopus 로고
    • A hybrid projection-based and radial basis function architecture: initial values and global optimisation
    • Cohen S., Intrator N. A hybrid projection-based and radial basis function architecture: initial values and global optimisation. Pattern Analysis & Applications 2002, 5(2):113-120.
    • (2002) Pattern Analysis & Applications , vol.5 , Issue.2 , pp. 113-120
    • Cohen, S.1    Intrator, N.2
  • 19
    • 0028461628 scopus 로고
    • A unified framework for MLPs and RBFNs: Introducing conic section function networks
    • Dorffner G. A unified framework for MLPs and RBFNs: Introducing conic section function networks. Cybernetics and Systems 1994, 25(4):511-554.
    • (1994) Cybernetics and Systems , vol.25 , Issue.4 , pp. 511-554
    • Dorffner, G.1
  • 20
    • 84872345141 scopus 로고    scopus 로고
    • Autonomous online learning of velocity kinematics on the iCub: A comparative study
    • Intelligent robots and systems, IROS, 2012 IEEE/RSJ international conference on.
    • Droniou, A., Ivaldi, S., Padois, V., & Sigaud, O. (2012). Autonomous online learning of velocity kinematics on the iCub: A comparative study. In Intelligent robots and systems, IROS, 2012 IEEE/RSJ international conference on (pp. 3577-3582).
    • (2012) , pp. 3577-3582
    • Droniou, A.1    Ivaldi, S.2    Padois, V.3    Sigaud, O.4
  • 21
    • 84872302495 scopus 로고    scopus 로고
    • Learning velocity kinematics: Experimental comparison of on-line regression algorithms
    • Droniou, A., Ivaldi, S., Stalph, P., Butz, M., & Sigaud, O. (2012). Learning velocity kinematics: Experimental comparison of on-line regression algorithms. In Proceedings robotica (pp. 15-20).
    • (2012) Proceedings robotica , pp. 15-20
    • Droniou, A.1    Ivaldi, S.2    Stalph, P.3    Butz, M.4    Sigaud, O.5
  • 25
    • 11144325691 scopus 로고
    • Partial least squares regression: A tutorial
    • Geladi P., Kowalski B. Partial least squares regression: A tutorial. Analytica Chimica Acta 1986, 185:1-17.
    • (1986) Analytica Chimica Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.2
  • 27
    • 84871707999 scopus 로고    scopus 로고
    • Incremental learning of robot dynamics using random features
    • IEEE international conference on robotics and automation
    • Gijsberts, A., & Metta, G. (2011). Incremental learning of robot dynamics using random features. In IEEE international conference on robotics and automation(pp. 951-956).
    • (2011) , pp. 951-956
    • Gijsberts, A.1    Metta, G.2
  • 28
    • 84930754389 scopus 로고    scopus 로고
    • Real-time model learning using incremental sparse spectrum Gaussian process regression
    • Gijsberts A., Metta G. Real-time model learning using incremental sparse spectrum Gaussian process regression. Neural Networks 2012.
    • (2012) Neural Networks
    • Gijsberts, A.1    Metta, G.2
  • 29
    • 51649116450 scopus 로고    scopus 로고
    • Sparse incremental learning for interactive robot control policy estimation
    • IEEE international conference on robotics and automation
    • Grollman, D., & Jenkins, O.C. (2008). Sparse incremental learning for interactive robot control policy estimation. In IEEE international conference on robotics and automation (pp. 3315-3320).
    • (2008) , pp. 3315-3320
    • Grollman, D.1    Jenkins, O.C.2
  • 30
    • 58249138517 scopus 로고    scopus 로고
    • Dynamical system modulation for robot learning via kinesthetic demonstrations
    • Hersch M., Guenter F., Calinon S., Billard A. Dynamical system modulation for robot learning via kinesthetic demonstrations. IEEE Transactions on Robotics 2008, 24(6):1463-1467.
    • (2008) IEEE Transactions on Robotics , vol.24 , Issue.6 , pp. 1463-1467
    • Hersch, M.1    Guenter, F.2    Calinon, S.3    Billard, A.4
  • 32
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16-18):3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 33
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 2006, 17(4):879-892.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.K.3
  • 34
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • Huang G.-B., Li M.-B., Chen L., Siew C.K. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 2008, 71(4-6):576-583.
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 576-583
    • Huang, G.-B.1    Li, M.-B.2    Chen, L.3    Siew, C.K.4
  • 36
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 37
    • 84875592161 scopus 로고    scopus 로고
    • Dynamical movement primitives: learning attractor models for motor behaviors
    • Ijspeert A.J., Nakanishi J., Hoffmann H., Pastor P., Schaal S. Dynamical movement primitives: learning attractor models for motor behaviors. Neural Computing 2013, 25(2):328-373.
    • (2013) Neural Computing , vol.25 , Issue.2 , pp. 328-373
    • Ijspeert, A.J.1    Nakanishi, J.2    Hoffmann, H.3    Pastor, P.4    Schaal, S.5
  • 38
    • 79959829039 scopus 로고    scopus 로고
    • Locally-weighted regression for estimating the forward kinematics of a geometric vocal tract model
    • INTERSPEECH
    • Lammert, A.C., Goldstein, L., & Iskarous, K. (2010). Locally-weighted regression for estimating the forward kinematics of a geometric vocal tract model. In INTERSPEECH (pp. 1604-1607).
    • (2010) , pp. 1604-1607
    • Lammert, A.C.1    Goldstein, L.2    Iskarous, K.3
  • 41
    • 84931266647 scopus 로고    scopus 로고
    • Non-linear regression algorithms for motor skill acquisition: a comparison
    • Munzer, T., Stulp, F., & Sigaud, O. (2014). Non-linear regression algorithms for motor skill acquisition: a comparison. In Proceedings JFPDA (pp. 1-16).
    • (2014) Proceedings JFPDA , pp. 1-16
    • Munzer, T.1    Stulp, F.2    Sigaud, O.3
  • 43
    • 70449580824 scopus 로고    scopus 로고
    • Model learning with local gaussian process regression
    • Nguyen-Tuong D., Seeger M., Peters J. Model learning with local gaussian process regression. Advanced Robotics 2009, 23(15):2015-2034.
    • (2009) Advanced Robotics , vol.23 , Issue.15 , pp. 2015-2034
    • Nguyen-Tuong, D.1    Seeger, M.2    Peters, J.3
  • 45
    • 0001002401 scopus 로고
    • Approximation and radial-basis-function networks
    • Park J., Sandberg I.W. Approximation and radial-basis-function networks. Neural Computing 1993, 5(2):305-316.
    • (1993) Neural Computing , vol.5 , Issue.2 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 46
    • 84931290540 scopus 로고    scopus 로고
    • On the number of inference regions of deep feed forward networks with piece-wise linear activations. ArXiv Preprint .
    • Pascanu, R., Montúfar, G., & Bengio, Y. (2013). On the number of inference regions of deep feed forward networks with piece-wise linear activations. ArXiv Preprint . arxiv:1312.6098.
    • (2013)
    • Pascanu, R.1    Montúfar, G.2    Bengio, Y.3
  • 47
    • 0001406710 scopus 로고
    • Some theorems in least squares
    • Plackett R.L. Some theorems in least squares. Biometrika 1950, 37:149-157.
    • (1950) Biometrika , vol.37 , pp. 149-157
    • Plackett, R.L.1
  • 48
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proceedings of the IEEE 1990, 78(9).
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9
    • Poggio, T.1    Girosi, F.2
  • 52
    • 78149297677 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
    • Rahimi A., Recht B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. Advances in neural information processing systems, Vol. 21 2008, 1313-1320. URL: http://books.nips.cc/papers/files/nips21/NIPS2008_0885.pdf.
    • (2008) Advances in neural information processing systems, Vol. 21 , pp. 1313-1320
    • Rahimi, A.1    Recht, B.2
  • 53
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 1958, 65(6):386-408.
    • (1958) Psychological Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 58
    • 0036482614 scopus 로고    scopus 로고
    • On the complexity of computing and learning with multiplicative neural networks
    • Schmitt M. On the complexity of computing and learning with multiplicative neural networks. Neural Computation 2002, 14(2):241-301.
    • (2002) Neural Computation , vol.14 , Issue.2 , pp. 241-301
    • Schmitt, M.1
  • 60
    • 0035015680 scopus 로고    scopus 로고
    • Three learning phases for radial-basis-function networks
    • Schwenker F., Kestler H.A., Palm G. Three learning phases for radial-basis-function networks. Neural Networks 2001, 14(4-5):439-458.
    • (2001) Neural Networks , vol.14 , Issue.4-5 , pp. 439-458
    • Schwenker, F.1    Kestler, H.A.2    Palm, G.3
  • 61
    • 0035015680 scopus 로고    scopus 로고
    • Three learning phases for radial-basis-function networks
    • Schwenker F., Kestler H.A., Palm G. Three learning phases for radial-basis-function networks. Neural Networks 2001, 14(4):439-458.
    • (2001) Neural Networks , vol.14 , Issue.4 , pp. 439-458
    • Schwenker, F.1    Kestler, H.A.2    Palm, G.3
  • 62
    • 84885941875 scopus 로고    scopus 로고
    • On-line regression algorithms for learning mechanical models of robots: a survey
    • Sigaud O., Salaün C., Padois V. On-line regression algorithms for learning mechanical models of robots: a survey. Robotics and Autonomous Systems 2011, 51:1117-1125.
    • (2011) Robotics and Autonomous Systems , vol.51 , pp. 1117-1125
    • Sigaud, O.1    Salaün, C.2    Padois, V.3
  • 63
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Schölkopf B. A tutorial on support vector regression. Statistics and Computing 2004, 14(3):199-222.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 65
    • 84870935597 scopus 로고    scopus 로고
    • Reinforcement learning with sequences of motion primitives for robust manipulation
    • king-Sun Fu Best Paper Award of the IEEE Transactions on Robotics for the year 2012
    • Stulp F., Theodorou E., Schaal S. Reinforcement learning with sequences of motion primitives for robust manipulation. IEEE Transactions on Robotics 2012, 28(6):1360-1370. king-Sun Fu Best Paper Award of the IEEE Transactions on Robotics for the year 2012.
    • (2012) IEEE Transactions on Robotics , vol.28 , Issue.6 , pp. 1360-1370
    • Stulp, F.1    Theodorou, E.2    Schaal, S.3
  • 68
    • 0002891388 scopus 로고    scopus 로고
    • Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional space
    • Vijayakumar, S., & Schaal, S. (2000). Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional space. In Proceedings of the seventeenth international conference on machine learning: Vol. 1 (pp. 288-293).
    • (2000) Proceedings of the seventeenth international conference on machine learning , vol.1 , pp. 288-293
    • Vijayakumar, S.1    Schaal, S.2
  • 71
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • Werbos P.J. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks 1988, 1(4):339-356.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 339-356
    • Werbos, P.J.1
  • 72
    • 84870473129 scopus 로고    scopus 로고
    • The no-prop algorithm: A new learning algorithm for multilayer neural networks
    • Widrow B., Greenblatt A., Kim Y., Park D. The no-prop algorithm: A new learning algorithm for multilayer neural networks. Neural Networks 2013, 37:182-188.
    • (2013) Neural Networks , vol.37 , pp. 182-188
    • Widrow, B.1    Greenblatt, A.2    Kim, Y.3    Park, D.4
  • 73
    • 0000704059 scopus 로고    scopus 로고
    • Computation with infinite neural networks
    • Williams C.K.I. Computation with infinite neural networks. Neural Computation 1998, 10(5):1203-1216.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1203-1216
    • Williams, C.K.I.1
  • 75
    • 0242662161 scopus 로고    scopus 로고
    • The general inefficiency of batch training for gradient descent learning
    • Wilson D.R., Martinez T.R. The general inefficiency of batch training for gradient descent learning. Neural Networks 2003, 16(10):1429-1451.
    • (2003) Neural Networks , vol.16 , Issue.10 , pp. 1429-1451
    • Wilson, D.R.1    Martinez, T.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.