메뉴 건너뛰기




Volumn 28, Issue 4, 2012, Pages 671-688

Incremental clustering of time-series by fuzzy clustering

Author keywords

Data mining; Fuzzy clustering; Incremental clustering; Prototype; Time series

Indexed keywords

CLUSTERING STRATEGY; CUSTOMER SEGMENTATION; DATA MINING COMMUNITY; DIMENSIONALITY REDUCTION; FUZZY APPROACH; INCREMENTAL CLUSTERING; LONGEST COMMON SUBSEQUENCES; LOW COMPLEXITY; PROTOTYPE; REAL APPLICATIONS; SIMILARITY MEASUREMENTS; TECHNIQUES USED; TIME-SERIES DATA;

EID: 84862906604     PISSN: 10162364     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (27)

References (33)
  • 6
    • 14844285758 scopus 로고    scopus 로고
    • Exact indexing of dynamic time warping
    • DOI 10.1007/s10115-004-0154-9
    • E. Keogh and C. Ratanamahatana, "Exact indexing of dynamic time warping", Knowledge and Information Systems, Vol. 7, 2005, pp. 358-386. (Pubitemid 40347209)
    • (2005) Knowledge and Information Systems , vol.7 , Issue.3 , pp. 358-386
    • Keogh, E.1    Ratanamahatana, C.A.2
  • 7
    • 0004368572 scopus 로고    scopus 로고
    • Temporal pattern recognition in noisy non-stationary time series based on quantization into symbolic streams: Lessons learned from financial volatility trading
    • WU Vienna University of Economics and Business
    • P. Tino, C. Schittenkopf, and G. Dorffner, "Temporal pattern recognition in noisy non-stationary time series based on quantization into symbolic streams: Lessons learned from financial volatility trading", Report Series for Adaptive Information Systems and Management in Economics and Management Science, No. 46, WU Vienna University of Economics and Business, 2000.
    • (2000) Report Series for Adaptive Information Systems and Management in Economics and Management Science, No. 46
    • Tino, P.1    Schittenkopf, C.2    Dorffner, G.3
  • 10
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data - A survey
    • T. W. Liao, "Clustering of time series data - A survey", Pattern Recognition, Vol. 38, 2005, pp. 1857-1874.
    • (2005) Pattern Recognition , vol.38 , pp. 1857-1874
    • Liao, T.W.1
  • 11
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, "Querying and mining of time series data: Experimental comparison of representations and distance measures", in Proceedings of the VLDB Endowment, Vol. 1, 2008, pp. 1542-1552.
    • (2008) Proceedings of the VLDB Endowment , vol.1 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 12
    • 84862852409 scopus 로고    scopus 로고
    • Empirical comparison of clustering methods for long time-series databases
    • S. Hirano and S. Tsumoto, "Empirical comparison of clustering methods for long time-series databases", in Proceedings of Active Mining, 2003, pp. 268-286.
    • (2003) Proceedings of Active Mining , pp. 268-286
    • Hirano, S.1    Tsumoto, S.2
  • 13
    • 56349160682 scopus 로고    scopus 로고
    • Temperature prediction and taifex forecasting based on automatic clustering techniques and two-factors high-order fuzzy time series
    • N. Wang and S. Chen, "Temperature prediction and taifex forecasting based on automatic clustering techniques and two-factors high-order fuzzy time series", Expert Systems with Applications, Vol. 36, 2009, pp. 2143-2154.
    • (2009) Expert Systems with Applications , vol.36 , pp. 2143-2154
    • Wang, N.1    Chen, S.2
  • 14
    • 80051606484 scopus 로고    scopus 로고
    • A novel two-level clustering method for time series data analysis
    • C. Lai, P. Chung, and V. Tweng, "A novel two-level clustering method for time series data analysis", Expert Systems with Applications, Vol. 37, 2010, pp. 6319-6326.
    • (2010) Expert Systems with Applications , vol.37 , pp. 6319-6326
    • Lai, C.1    Chung, P.2    Tweng, V.3
  • 15
    • 21844471761 scopus 로고    scopus 로고
    • Clustering of time-series subsequences is meaningless: Implications for previous and future research
    • DOI 10.1007/s10115-004-0172-7
    • E. Keogh and J. Lin, "Clustering of time-series subsequences is meaningless: Implications for previous and future research", in Proceedings of the 3rd IEEE International Conference on Data Mining, Vol. 8, 2005, pp. 154-177. (Pubitemid 40951989)
    • (2005) Knowledge and Information Systems , vol.8 , Issue.2 , pp. 154-177
    • Keogh, E.1    Lin, J.2
  • 26
    • 34147174850 scopus 로고    scopus 로고
    • Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes
    • DOI 10.1109/ICPR.2006.392, 1699726, Proceedings - 18th International Conference on Pattern Recognition, ICPR 2006
    • Z. Zhang, K. Huang, and T. Tan, "Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes", in Proceedings of the 18th International Conference on Pattern Recognition, Vol. 3, 2006, pp. 1135-1138. (Pubitemid 46553321)
    • (2006) Proceedings - International Conference on Pattern Recognition , vol.3 , pp. 1135-1138
    • Zhang, Z.1    Huang, K.2    Tan, T.3
  • 32
    • 11244353294 scopus 로고    scopus 로고
    • A methodology for dynamic data mining based on fuzzy clustering
    • DOI 10.1016/j.fss.2004.03.028, PII S016501140400140X
    • F. Crespo and R. Weber, "A methodology for dynamic data mining based on fuzzy clustering", Fuzzy Sets and Systems, Vol. 150, 2005, pp. 267-284. (Pubitemid 40056021)
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 267-284
    • Crespo, F.1    Weber, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.