메뉴 건너뛰기




Volumn 6, Issue , 2012, Pages

Functional clustering of time series gene expression data by Granger causality

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLUSTER ANALYSIS; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; HELA CELL; HUMAN; METHODOLOGY; STATISTICAL ANALYSIS; TIME;

EID: 84867902634     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/1752-0509-6-137     Document Type: Article
Times cited : (34)

References (37)
  • 1
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with random-effects components for clustering correlated gene-expression profiles
    • 10.1093/bioinformatics/btl165, 16675467
    • Ng SK, McLachlan GJ, Wang K, Jones LB-T, Ng S-W. A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 2006, 22:1745-1752. 10.1093/bioinformatics/btl165, 16675467.
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.K.1    McLachlan, G.J.2    Wang, K.3    Jones, L.B.-T.4    Ng, S.-W.5
  • 2
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • 10.1038/ng1165, 12740579
    • Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003, 34:166-176. 10.1038/ng1165, 12740579.
    • (2003) Nat Genet , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 3
    • 77951942705 scopus 로고    scopus 로고
    • Inferring cluster-based networks from differently stimulated multiple time-course gene expression data
    • 10.1093/bioinformatics/btq094, 2853688, 20223837
    • Shiraishi Y, et al. Inferring cluster-based networks from differently stimulated multiple time-course gene expression data. Bioinformatics 2010, 26:1073-1081. 10.1093/bioinformatics/btq094, 2853688, 20223837.
    • (2010) Bioinformatics , vol.26 , pp. 1073-1081
    • Shiraishi, Y.1
  • 4
    • 0141993704 scopus 로고    scopus 로고
    • A gene co-expression network for global discovery of conserved genetics modules
    • 10.1126/science.1087447, 12934013
    • Stuart JM, Segal E, Koller D, Kim SK. A gene co-expression network for global discovery of conserved genetics modules. Science 2003, 302:249-55. 10.1126/science.1087447, 12934013.
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 5
    • 85032779470 scopus 로고    scopus 로고
    • Finding module-based networks with state-space models - mining high-dimensional and short time-course gene expression data
    • Yamaguchi R, Yoshida R, Imoto S, Higuchi T, Miyano S. Finding module-based networks with state-space models - mining high-dimensional and short time-course gene expression data. IEEE Signal Process Mag 2007, 24:37-46.
    • (2007) IEEE Signal Process Mag , vol.24 , pp. 37-46
    • Yamaguchi, R.1    Yoshida, R.2    Imoto, S.3    Higuchi, T.4    Miyano, S.5
  • 6
    • 0000351727 scopus 로고
    • Investigating causal relationships by econometric models and cross-spectral methods
    • Granger CWJ. Investigating causal relationships by econometric models and cross-spectral methods. Econometrica 1969, 37:424-438.
    • (1969) Econometrica , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 9
    • 34547852213 scopus 로고    scopus 로고
    • Time-varying modeling of gene expression regulatory networks using wavelet dynamic vector autoregressive method
    • Fujita A, Sato JR, Garay-Malpartida HM, Morettin PA, Sogayar MC, Ferreira CE. Time-varying modeling of gene expression regulatory networks using wavelet dynamic vector autoregressive method. Bioinformatics 2007a, 23:16253-1630.
    • (2007) Bioinformatics , vol.23 , pp. 16253-21630
    • Fujita, A.1    Sato, J.R.2    Garay-Malpartida, H.M.3    Morettin, P.A.4    Sogayar, M.C.5    Ferreira, C.E.6
  • 12
    • 75649122871 scopus 로고    scopus 로고
    • The impact of measurement error in the identification of regulatory networks
    • Fujita A, Patriota AG, Sato JR, Miyano S. The impact of measurement error in the identification of regulatory networks. BMC Bioinf 2009, 10:412.
    • (2009) BMC Bioinf , vol.10 , pp. 412
    • Fujita, A.1    Patriota, A.G.2    Sato, J.R.3    Miyano, S.4
  • 13
    • 44949262939 scopus 로고    scopus 로고
    • Uncovering interactions in the frequency domain
    • 10.1371/journal.pcbi.1000087, 2398781, 18516243
    • Guo S, Wu J, Ding M, Feng J. Uncovering interactions in the frequency domain. PLoS Comput Biol 2008, 4:e1000087. 10.1371/journal.pcbi.1000087, 2398781, 18516243.
    • (2008) PLoS Comput Biol , vol.4
    • Guo, S.1    Wu, J.2    Ding, M.3    Feng, J.4
  • 14
    • 67649947772 scopus 로고    scopus 로고
    • Estimation of nonlinear gene regulatory networks via L1 regularized NVAR from time series gene expression data
    • Kojima K, Fujita A, Shimamura T, Imoto S, Miyano S. Estimation of nonlinear gene regulatory networks via L1 regularized NVAR from time series gene expression data. Genome Informatics 2008, 20:37-51.
    • (2008) Genome Informatics , vol.20 , pp. 37-51
    • Kojima, K.1    Fujita, A.2    Shimamura, T.3    Imoto, S.4    Miyano, S.5
  • 15
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical Granger modeling for gene expression regulatory networks discovery
    • 10.1093/bioinformatics/btp199, 2687953, 19477976
    • Lozano AC, Abe N, Liu Y, Rosset S. Grouped graphical Granger modeling for gene expression regulatory networks discovery. Bioinformatics 2009, 25:i110-i118. 10.1093/bioinformatics/btp199, 2687953, 19477976.
    • (2009) Bioinformatics , vol.25
    • Lozano, A.C.1    Abe, N.2    Liu, Y.3    Rosset, S.4
  • 16
    • 33847348163 scopus 로고    scopus 로고
    • Causality and pathway search in microarray time series experiments
    • 10.1093/bioinformatics/btl598, 17158516
    • Mukhopadhyay ND, Chatterjee S. Causality and pathway search in microarray time series experiments. Bioinformatics 2007, 23:442-449. 10.1093/bioinformatics/btl598, 17158516.
    • (2007) Bioinformatics , vol.23 , pp. 442-449
    • Mukhopadhyay, N.D.1    Chatterjee, S.2
  • 17
    • 65849504774 scopus 로고    scopus 로고
    • A note on inferring acyclic network structures using Granger causality tests
    • Nagarajan R. A note on inferring acyclic network structures using Granger causality tests. Int J Biostatistics 2009, 5:10.
    • (2009) Int J Biostatistics , vol.5 , pp. 10
    • Nagarajan, R.1
  • 18
    • 77956514067 scopus 로고    scopus 로고
    • Discovering graphical Granger causality using the truncating lasso penalty
    • 10.1093/bioinformatics/btq377, 2935442, 20823316
    • Shojaie A, Michailidis G. Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics 2010, 26:i517-i523. 10.1093/bioinformatics/btq377, 2935442, 20823316.
    • (2010) Bioinformatics , vol.26
    • Shojaie, A.1    Michailidis, G.2
  • 19
    • 0035377249 scopus 로고    scopus 로고
    • Partial directed coherence: A new concept in neural structure determination
    • Baccala LA, Sameshima K. Partial directed coherence: A new concept in neural structure determination. Biol Cybernetics 2001, 84:463-474.
    • (2001) Biol Cybernetics , vol.84 , pp. 463-474
    • Baccala, L.A.1    Sameshima, K.2
  • 21
    • 77956502764 scopus 로고    scopus 로고
    • A fast and robust statistical test based on Likelihood ratio with Bartlett correction to identify Granger causality between gene sets
    • Fujita A, Kojima K, Patriota AG, Sato JR, Severino P, Miyano S. A fast and robust statistical test based on Likelihood ratio with Bartlett correction to identify Granger causality between gene sets. Bioinformatics 2010b, 26:2349-2351.
    • (2010) Bioinformatics , vol.26 , pp. 2349-2351
    • Fujita, A.1    Kojima, K.2    Patriota, A.G.3    Sato, J.R.4    Severino, P.5    Miyano, S.6
  • 22
    • 77954959510 scopus 로고    scopus 로고
    • Analyzing the connectivity between regions of interest: An approach based on cluster Granger causality for fMRI data analysis
    • 10.1016/j.neuroimage.2010.05.022, 20472076
    • Sato JR, Fujita A, Cardoso EF, Thomaz CE, Brammer MJ, Amaro E. Analyzing the connectivity between regions of interest: An approach based on cluster Granger causality for fMRI data analysis. NeuroImage 2010, 52:1444-1455. 10.1016/j.neuroimage.2010.05.022, 20472076.
    • (2010) NeuroImage , vol.52 , pp. 1444-1455
    • Sato, J.R.1    Fujita, A.2    Cardoso, E.F.3    Thomaz, C.E.4    Brammer, M.J.5    Amaro, E.6
  • 23
    • 0031927480 scopus 로고    scopus 로고
    • Functional clustering: identifying strongly interactive brain regions in neuroimaging data
    • 10.1006/nimg.1997.0313, 9558645
    • Tononi G, McIntosh AR, Russel DP, Edelman GM. Functional clustering: identifying strongly interactive brain regions in neuroimaging data. NeuroImage 1998, 7:133-149. 10.1006/nimg.1997.0313, 9558645.
    • (1998) NeuroImage , vol.7 , pp. 133-149
    • Tononi, G.1    McIntosh, A.R.2    Russel, D.P.3    Edelman, G.M.4
  • 26
    • 44349106021 scopus 로고    scopus 로고
    • Divisive correlation clustering algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles
    • 10.1093/bioinformatics/btn133, 18407922
    • Bhattacharya A, De RK. Divisive correlation clustering algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles. Bioinformatics 2008, 24:1359-1366. 10.1093/bioinformatics/btn133, 18407922.
    • (2008) Bioinformatics , vol.24 , pp. 1359-1366
    • Bhattacharya, A.1    De, R.K.2
  • 27
    • 33751327438 scopus 로고    scopus 로고
    • Comparative gene expression analysis by differential clustering approach: applications to the Candida albicans transcription program
    • 10.1371/journal.pgen.0010039, 1239936, 16470937
    • Ihmels J, Bergmann S, Berman J, Barkai N. Comparative gene expression analysis by differential clustering approach: applications to the Candida albicans transcription program. PLoS Genet 2005, 1:e39. 10.1371/journal.pgen.0010039, 1239936, 16470937.
    • (2005) PLoS Genet , vol.1
    • Ihmels, J.1    Bergmann, S.2    Berman, J.3    Barkai, N.4
  • 28
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 1987, 20:53-65.
    • (1987) J Comput Appl Math , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 29
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • Celeux G, Govaert G. A classification EM algorithm for clustering and two stochastic versions. Comput Stat Data Anal 1992, 14:315-332.
    • (1992) Comput Stat Data Anal , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 31
    • 40749103000 scopus 로고    scopus 로고
    • A signal network involving coactivated NF-κB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas
    • 10.1002/ijc.23324, 18172861
    • Lee TL, Yeh J, Friedman J, Yan B, Yang X, Yeh NT, Waes CV, Chen Z. A signal network involving coactivated NF-κB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int J Cancer 2008, 122:1987-1998. 10.1002/ijc.23324, 18172861.
    • (2008) Int J Cancer , vol.122 , pp. 1987-1998
    • Lee, T.L.1    Yeh, J.2    Friedman, J.3    Yan, B.4    Yang, X.5    Yeh, N.T.6    Waes, C.V.7    Chen, Z.8
  • 32
    • 44949236232 scopus 로고    scopus 로고
    • FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-κB and activating protein-1
    • 10.1002/mc.20398, 18041768
    • Lungu G, Covaleda L, Mendes O, Martini-Stoica H, Stoica G. FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-κB and activating protein-1. Mol Carcinog 2008, 47:424-435. 10.1002/mc.20398, 18041768.
    • (2008) Mol Carcinog , vol.47 , pp. 424-435
    • Lungu, G.1    Covaleda, L.2    Mendes, O.3    Martini-Stoica, H.4    Stoica, G.5
  • 33
    • 78650984035 scopus 로고    scopus 로고
    • The Receptor Tyrosine Kinase FGFR4 Negatively Regulates NF-kappaB Signaling
    • 10.1371/journal.pone.0014412, 3008709, 21203561
    • Drafahl KA, McAndrew CW, Meyer AN, Haas M, Donoghue DJ. The Receptor Tyrosine Kinase FGFR4 Negatively Regulates NF-kappaB Signaling. PLoS ONE 2010, 5:e14412. 10.1371/journal.pone.0014412, 3008709, 21203561.
    • (2010) PLoS ONE , vol.5
    • Drafahl, K.A.1    McAndrew, C.W.2    Meyer, A.N.3    Haas, M.4    Donoghue, D.J.5
  • 34
    • 77950436631 scopus 로고    scopus 로고
    • A temporal precedence based clustering method for gene expression microarray data
    • Krishna R, Li CT, Buchanan-Wollaston V. A temporal precedence based clustering method for gene expression microarray data. BMC Bioinf 2010, 11:68.
    • (2010) BMC Bioinf , vol.11 , pp. 68
    • Krishna, R.1    Li, C.T.2    Buchanan-Wollaston, V.3
  • 35
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 2010, 10:515-534.
    • (2010) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 36


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.