메뉴 건너뛰기




Volumn 13, Issue 3, 2006, Pages 335-364

Characteristic-based clustering for time series data

Author keywords

Clustering; Dimensionality reduction; Feature measures; Global characteristics; Time series clustering

Indexed keywords

ALGORITHMS; BENCHMARKING; COMPUTATIONAL METHODS; PROBLEM SOLVING; TIME SERIES ANALYSIS;

EID: 33749012790     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-005-0039-x     Document Type: Article
Times cited : (520)

References (61)
  • 5
    • 0000133998 scopus 로고
    • An analysis of transformations
    • Box, G.E.P. and Cox, D.R. 1964. An analysis of transformations. JRSS, B(26):211-246.
    • (1964) JRSS , vol.B , Issue.26 , pp. 211-246
    • Box, G.E.P.1    Cox, D.R.2
  • 6
    • 84945595789 scopus 로고
    • Distribution of the residual autocorrelations in autoregressive- integrated moving-average time series models
    • Box, G.E.P. and Pierce, D.A. 1970. Distribution of the residual autocorrelations in autoregressive-integrated moving-average time series models. Journal of the American Statistical Association, 65:1509-1526.
    • (1970) Journal of the American Statistical Association , vol.65 , pp. 1509-1526
    • Box, G.E.P.1    Pierce, D.A.2
  • 17
    • 22844456607 scopus 로고    scopus 로고
    • Role of Occam's razor in knowledge discovery
    • Domingos, P. 1999. Role of Occam's razor in knowledge discovery. Data Mining and Knowledge Discovery, 3:409-425.
    • (1999) Data Mining and Knowledge Discovery , vol.3 , pp. 409-425
    • Domingos, P.1
  • 24
    • 0013450593 scopus 로고    scopus 로고
    • Testing for nonlinearity in a vector time series
    • Harvill, J.L., Ray, B.K., and Harvill, J.L. 1999. Testing for nonlinearity in a vector time series. Biometrika, 86:728-734.
    • (1999) Biometrika , vol.86 , pp. 728-734
    • Harvill, J.L.1    Ray, B.K.2    Harvill, J.L.3
  • 25
    • 0001917942 scopus 로고
    • Space-time modelling with long-memory dependence: Assessing Ireland's wind power resource (with discussion)
    • Haslett, J. and Raftery, A.E. 1989. Space-time modelling with long-memory dependence: Assessing Ireland's wind power resource (with discussion). Applied Statistics, 38:1-50.
    • (1989) Applied Statistics , vol.38 , pp. 1-50
    • Haslett, J.1    Raftery, A.E.2
  • 27
  • 28
    • 0021638982 scopus 로고
    • Modeling persistence in hydrological time series using fractional differencing
    • Hosking, J.R.M. 1984. Modeling persistence in hydrological time series using fractional differencing. Water Resources Research, 20(12):1898-1908.
    • (1984) Water Resources Research , vol.20 , Issue.12 , pp. 1898-1908
    • Hosking, J.R.M.1
  • 37
    • 78149351008 scopus 로고    scopus 로고
    • Clustering of time series subsequences is meaningless: Implications for past and future research
    • Melbourne, FL, USA
    • Keogh, E., Lin, J., and Truppel, W. 2003. Clustering of time series subsequences is meaningless: Implications for past and future research. In Proc. of the 3rd IEEE International Conference on Data Mining, Melbourne, FL, USA, pp. 115-122.
    • (2003) Proc. of the 3rd IEEE International Conference on Data Mining , pp. 115-122
    • Keogh, E.1    Lin, J.2    Truppel, W.3
  • 40
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • Lange, T., Roth, V., Braun, M.L., and Buhmann, J.M. 2004. Stability-based validation of clustering solutions. Neural Computation, 16(6): 1299-1323.
    • (2004) Neural Computation , vol.16 , Issue.6 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.L.3    Buhmann, J.M.4
  • 41
    • 14844360814 scopus 로고    scopus 로고
    • Neural network test and nonparametric kernel test for neglected nonlinearity in regression models
    • Lee, T.-H. 2001. Neural network test and nonparametric kernel test for neglected nonlinearity in regression models. Studies in Nonlinear Dynamics & Econometrics, 4(4):169-182.
    • (2001) Studies in Nonlinear Dynamics & Econometrics , vol.4 , Issue.4 , pp. 169-182
    • Lee, T.-H.1
  • 45
    • 26944440613 scopus 로고    scopus 로고
    • Time series feature extraction for data mining using dwt and dft
    • Mörchen, F. 2003. Time series feature extraction for data mining using dwt and dft. Technical Report No. 33.
    • (2003) Technical Report No. 33 , vol.33
    • Mörchen, F.1
  • 48
    • 0003766191 scopus 로고    scopus 로고
    • San Francisco, California: Morgan Kaufmann Publishers, Inc.
    • Pyle, D. 1999. Data Preparation for Data Mining. San Francisco, California: Morgan Kaufmann Publishers, Inc.
    • (1999) Data Preparation for Data Mining
    • Pyle, D.1
  • 50
    • 33749032571 scopus 로고    scopus 로고
    • Subsampling model selection in neural networks for nonlinear time series analysis
    • Baltimore, Maryland
    • Rocca, M.L. and Perna, C. 2004. Subsampling model selection in neural networks for nonlinear time series analysis. In Proc. of the 36th Symposium on the Interface, Baltimore, Maryland.
    • (2004) Proc. of the 36th Symposium on the Interface
    • Rocca, M.L.1    Perna, C.2
  • 51
    • 0006970753 scopus 로고    scopus 로고
    • Estimation of the hurst parameter of long-range dependent time series
    • Rose, O. 1996. Estimation of the Hurst Parameter of Long-Range Dependent Time Series. Research Report, 137.
    • (1996) Research Report , pp. 137
    • Rose, O.1
  • 52
    • 0000541109 scopus 로고
    • An extension of shapiro and wilk's w test for normality to large samples
    • Royston, P. 1982. An extension of shapiro and wilk's w test for normality to large samples. Applied Statistics, 31:115-124.
    • (1982) Applied Statistics , vol.31 , pp. 115-124
    • Royston, P.1
  • 56
    • 84958967653 scopus 로고    scopus 로고
    • Combining the knohonen self-organizing map and k-means for on-line classification of sensor data
    • Springer Verlag
    • Van Laerhoven, K. 2001. Combining the knohonen self-organizing map and k-means for on-line classification of sensor data. Artificial neural networks, lecture notes in artificial intelligence. Springer Verlag, pp. 464-70.
    • (2001) Artificial Neural Networks, Lecture Notes in Artificial Intelligence , pp. 464-470
    • Van Laerhoven, K.1
  • 60
    • 0008494528 scopus 로고
    • Determining lyapunov exponents from a time series
    • Wolf, A. Swift, J.B. Swinney, H.L. and Vastano, J.A. 1985. Determining lyapunov exponents from a time series. PHYSICA D, 16:285-317.
    • (1985) Physica D , vol.16 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 61
    • 0034364945 scopus 로고    scopus 로고
    • Modelling and smoothing parameter estimation with multiple quadratic penalties
    • Wood, S.N. 2000. Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Statist. Soc. B, 62(2):413-428.
    • (2000) J. R. Statist. Soc. B , vol.62 , Issue.2 , pp. 413-428
    • Wood, S.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.