메뉴 건너뛰기




Volumn 37, Issue 8, 2004, Pages 1675-1689

Time series clustering with ARMA mixtures

Author keywords

ARMA model; EM algorithm; Mixture model; Model based clustering; Time series analysis

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; DATA MINING; DATA REDUCTION; MATHEMATICAL MODELS; REGRESSION ANALYSIS; TIME SERIES ANALYSIS;

EID: 2642570831     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2003.12.018     Document Type: Article
Times cited : (130)

References (44)
  • 3
    • 38249019422 scopus 로고
    • Mixed Markov and latent Markov modelling applied to brand choice behaviour
    • Poulsen C.S. Mixed Markov and latent Markov modelling applied to brand choice behaviour Int. J. Res. Marketing 7 1 1990 5-19
    • (1990) Int. J. Res. Marketing , vol.7 , Issue.1 , pp. 5-19
    • Poulsen, C.S.1
  • 4
    • 0003516479 scopus 로고    scopus 로고
    • Technical Report MSR-TR-97-24, Microsoft Research, Redmond, WA, USA, September
    • G. Ridgeway, Finite discrete Markov process clustering, Technical Report MSR-TR-97-24, Microsoft Research, Redmond, WA, USA, September 1997.
    • (1997) Finite Discrete Markov Process Clustering
    • Ridgeway, G.1
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Ser. B
    • Dempster A.P. Laird N.M. Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm (with discussion) J. R. Statist. Soc. Ser. B 39 1977 1-38
    • (1977) J. R. Statist. Soc. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 14
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition Proc. IEEE 77 2 1989 257-286
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 16
    • 2642567171 scopus 로고    scopus 로고
    • Using dynamic time warping to bootstrap HMM-based clustering of time series
    • R. Sun, & C. L. Giles (Eds.), Berlin, Germany: Springer
    • Oates T. Firoiu L. Cohen P.R. Using dynamic time warping to bootstrap HMM-based clustering of time series Sun R. Giles C.L. Sequence Learning: Paradigms, Algorithms, and Applications 2001 35-52 Springer Berlin, Germany
    • (2001) Sequence Learning: Paradigms, Algorithms, and Applications , pp. 35-52
    • Oates, T.1    Firoiu, L.2    Cohen, P.R.3
  • 17
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology: Applications to protein modeling
    • Krogh A. Brown M. Mian I.S. Sjölander K. Haussler D. Hidden Markov models in computational biology: Applications to protein modeling J. Mol. Biol. 235 5 1994 1501-1531
    • (1994) J. Mol. Biol. , vol.235 , Issue.5 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.S.3    Sjölander, K.4    Haussler, D.5
  • 18
    • 0031268934 scopus 로고    scopus 로고
    • Self-organizing feature maps and hidden Markov models for machine-tool monitoring
    • Owsley L.M.D. Atlas L.E. Bernard G.D. Self-organizing feature maps and hidden Markov models for machine-tool monitoring IEEE Trans. Signal Process. 45 11 1997 2787-2798
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.11 , pp. 2787-2798
    • Owsley, L.M.D.1    Atlas, L.E.2    Bernard, G.D.3
  • 19
    • 84898995769 scopus 로고    scopus 로고
    • Clustering sequences with hidden Markov models
    • MIT Press, Cambridge, MA
    • P. Smyth, Clustering sequences with hidden Markov models, in: Advances in Neural Information Processing Systems, Vol. 9, MIT Press, Cambridge, MA, 1997, pp. 648-654.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 648-654
    • Smyth, P.1
  • 20
    • 0001012402 scopus 로고    scopus 로고
    • A Bayesian approach to temporal data clustering using hidden Markov models
    • Stanford, CA, USA, 29 June-2 July
    • C. Li, G. Biswas, A Bayesian approach to temporal data clustering using hidden Markov models, in: Proceedings of the 17th International Conference on Machine Learning, Stanford, CA, USA, 29 June-2 July 2000, pp. 543-550.
    • (2000) Proceedings of the 17th International Conference on Machine Learning , pp. 543-550
    • Li, C.1    Biswas, G.2
  • 22
    • 1542326229 scopus 로고    scopus 로고
    • Rival penalized competitive learning for model-based sequence clustering
    • Barcelona, Spain, 3-7 September
    • M.H. Law, J.T. Kwok, Rival penalized competitive learning for model-based sequence clustering, in: Proceedings of the 15th International Conference on Pattern Recognition, Vol. 2, Barcelona, Spain, 3-7 September 2000, pp. 195-198.
    • (2000) Proceedings of the 15th International Conference on Pattern Recognition , vol.2 , pp. 195-198
    • Law, M.H.1    Kwok, J.T.2
  • 23
    • 0001237218 scopus 로고
    • A maximum likelihood methodology for clusterwise linear regression
    • DeSarbo W.S. Cron W.L. A maximum likelihood methodology for clusterwise linear regression J. Classification 5 1 1988 249-282
    • (1988) J. Classification , vol.5 , Issue.1 , pp. 249-282
    • DeSarbo, W.S.1    Cron, W.L.2
  • 28
    • 2642538778 scopus 로고    scopus 로고
    • Comparison between mixture of ARMA and mixture of AR model with application to time series forecasting
    • Kitakyushu, Japan, 21-23 October
    • H.Y. Kwok, C.M. Chen, L. Xu, Comparison between mixture of ARMA and mixture of AR model with application to time series forecasting, in: Proceedings of the Fifth International Conference on Neural Information Processing, Kitakyushu, Japan, 21-23 October 1998, pp. 1049-1052.
    • (1998) Proceedings of the Fifth International Conference on Neural Information Processing , pp. 1049-1052
    • Kwok, H.Y.1    Chen, C.M.2    Xu, L.3
  • 31
    • 2642545237 scopus 로고    scopus 로고
    • Mixtures of ARMA models for model-based time series clustering
    • Maebashi City, Japan, 9-12 December
    • Y. Xiong, D.Y. Yeung, Mixtures of ARMA models for model-based time series clustering, in: Proceedings of the IEEE International Conference on Data Mining, Maebashi City, Japan, 9-12 December 2002, pp. 717-720.
    • (2002) Proceedings of the IEEE International Conference on Data Mining , pp. 717-720
    • Xiong, Y.1    Yeung, D.Y.2
  • 32
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner R.A. Walker H.F. Mixture densities, maximum likelihood and the EM algorithm SIAM Rev. 26 2 1984 195-239
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 33
    • 0002241694 scopus 로고
    • The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
    • Celeux G. Diebolt J. The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem Comput. Statist. Quar. 2 1985 73-82
    • (1985) Comput. Statist. Quar. , vol.2 , pp. 73-82
    • Celeux, G.1    Diebolt, J.2
  • 34
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • Celeux G. Govaert G. A classification EM algorithm for clustering and two stochastic versions Comput. Statist. Data Anal. 14 1992 315-332
    • (1992) Comput. Statist. Data Anal. , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 35
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Ser. B
    • Stone M. Cross-validatory choice and assessment of statistical predictions J. R. Statist. Soc. Ser. B 36 1 1974 111-147
    • (1974) J. R. Statist. Soc. , vol.36 , Issue.1 , pp. 111-147
    • Stone, M.1
  • 36
    • 0017336301 scopus 로고
    • Asymptotics for and against cross-validation
    • Stone M. Asymptotics for and against cross-validation Biometrika 64 1 1977 29-35
    • (1977) Biometrika , vol.64 , Issue.1 , pp. 29-35
    • Stone, M.1
  • 37
    • 2642528997 scopus 로고    scopus 로고
    • Technical Report 98-09, Department of Information and Computer Science, University of California, Irvine, CA, USA, February
    • P. Smyth, Model selection for probabilistic clustering using cross-validated likelihood, Technical Report 98-09, Department of Information and Computer Science, University of California, Irvine, CA, USA, February 1998.
    • (1998) Model Selection for Probabilistic Clustering Using Cross-validated Likelihood
    • Smyth, P.1
  • 38
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J.D. Raftery A.E. Model-based Gaussian and non-Gaussian clustering Biometrics 49 1993 803-821
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 40
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz G. Estimating the dimension of a model Ann. Statist. 6 2 1978 461-464
    • (1978) Ann. Statist. , vol.6 , Issue.2 , pp. 461-464
    • Schwartz, G.1
  • 43
    • 0025641634 scopus 로고
    • A new mode of communication between man and his surroundings
    • Keirn Z.A. Aunon J.I. A new mode of communication between man and his surroundings IEEE Trans. Biomed. Eng. 37 12 1990 1209-1214
    • (1990) IEEE Trans. Biomed. Eng. , vol.37 , Issue.12 , pp. 1209-1214
    • Keirn, Z.A.1    Aunon, J.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.