메뉴 건너뛰기




Volumn 48, Issue 9, 2015, Pages 2761-2771

Fast multi-label feature selection based on information-theoretic feature ranking

Author keywords

Entropy; Interaction information; Multi label feature selection; Mutual information

Indexed keywords

ENTROPY; INFORMATION THEORY; LEARNING SYSTEMS;

EID: 84929510253     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.04.009     Document Type: Article
Times cited : (131)

References (39)
  • 3
  • 6
    • 78049326859 scopus 로고    scopus 로고
    • Regret analysis for performance metrics in multi-label classification: The case of hamming and subset zero-one loss
    • K. Dembczyński, W. Waegeman, W. Cheng, E. Hüllermeier, Regret analysis for performance metrics in multi-label classification: the case of hamming and subset zero-one loss, in: Lecture Notes in Computer Science, vol. 6321 (2010) 280-295.
    • (2010) Lecture Notes in Computer Science , vol.6321 , pp. 280-295
    • Dembczyński, K.1    Waegeman2    Cheng, W.3    Hüllermeier, E.4
  • 8
    • 84884203069 scopus 로고    scopus 로고
    • Mutual information-based feature selection for multilabel classification
    • G. Doquire, and M. Verleysen Mutual information-based feature selection for multilabel classification Neurocomputing 122 2013 148 155
    • (2013) Neurocomputing , vol.122 , pp. 148-155
    • Doquire, G.1    Verleysen, M.2
  • 16
    • 84859904592 scopus 로고    scopus 로고
    • GMLC a multi-label feature selection framework for graph classification
    • X. Kong, and P. Yu gMLC a multi-label feature selection framework for graph classification Knowl. Inf. Syst. 31 2012 281 305
    • (2012) Knowl. Inf. Syst. , vol.31 , pp. 281-305
    • Kong, X.1    Yu, P.2
  • 18
    • 84870668654 scopus 로고    scopus 로고
    • Feature selection for multi-label classification using multivariate mutual information
    • J. Lee, and D.W. Kim Feature selection for multi-label classification using multivariate mutual information Pattern Recognit. Lett. 34 2013 349 357
    • (2013) Pattern Recognit. Lett. , vol.34 , pp. 349-357
    • Lee, J.1    Kim, D.W.2
  • 19
    • 84876811202 scopus 로고    scopus 로고
    • Rcv1 a new benchmark collection for text categorization research
    • D. Lewis, Y. Yang, T. Rose, and F. Li Rcv1 a new benchmark collection for text categorization research J. Mach. Learn. Res. 5 2004 361 397
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 20
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski An extensive experimental comparison of methods for multi-label learning Pattern Recognit. 45 2012 3084 3104
    • (2012) Pattern Recognit. , vol.45 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 24
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • J. Read, B. Pfahringer, G. Holmes, and E. Frank Classifier chains for multi-label classification Mach. Learn. 85 2011 333 359
    • (2011) Mach. Learn. , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 25
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter a boosting-based system for text categorization
    • R. Schapire, and Y. Singer Boostexter a boosting-based system for text categorization Mach. Learn. 39 2000 135 168
    • (2000) Mach. Learn. , vol.39 , pp. 135-168
    • Schapire, R.1    Singer, Y.2
  • 26
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani Machine learning in automated text categorization ACM Comput. Surv. 34 2002 1 47
    • (2002) ACM Comput. Surv. , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 29
    • 84875172457 scopus 로고    scopus 로고
    • A comparison of multi-label feature selection methods using the problem transformation approach
    • N. Spolaôr, E.A. Cherman, M.C. Monard, and H.D. Lee A comparison of multi-label feature selection methods using the problem transformation approach Electron. Notes Theor. Comput. Sci. 292 2013 135 151
    • (2013) Electron. Notes Theor. Comput. Sci. , vol.292 , pp. 135-151
    • Spolaôr, N.1    Cherman, E.A.2    Monard, M.C.3    Lee, H.D.4
  • 30
    • 33751524073 scopus 로고    scopus 로고
    • Discovering recurring anomalies in text reports regarding complex space systems
    • Big Sky, USA
    • A.N. Srivastava, B. Zane-Ulman, Discovering recurring anomalies in text reports regarding complex space systems, in: Proceedings of IEEE Aerospace Conference, Big Sky, USA, 2005, pp. 3853-3862.
    • (2005) Proceedings of IEEE Aerospace Conference , pp. 3853-3862
    • Srivastava, A.N.1    Zane-Ulman, B.2
  • 35
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • M. Zhang, J. Pena, and V. Robles Feature selection for multi-label naive Bayes classification Inf. Sci. 179 2009 3218 3229
    • (2009) Inf. Sci. , vol.179 , pp. 3218-3229
    • Zhang, M.1    Pena, J.2    Robles, V.3
  • 37
    • 33947681316 scopus 로고    scopus 로고
    • ML-kNN a lazy learning approach to multi-label learning
    • M. Zhang, and Z. Zhou ML-kNN a lazy learning approach to multi-label learning Pattern Recognit. 40 2007 2038 2048
    • (2007) Pattern Recognit. , vol.40 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 38
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithm
    • M. Zhang, and Z. Zhou A review on multi-label learning algorithm IEEE Trans. Knowl. Data Eng. 26 2013 1819 1837
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.26 , pp. 1819-1837
    • Zhang, M.1    Zhou, Z.2
  • 39
    • 78049346655 scopus 로고    scopus 로고
    • Multilabel dimensionality reduction via dependence maximization
    • Article No. 14
    • Y. Zhang, and Z. Zhou Multilabel dimensionality reduction via dependence maximization ACM Trans. Knowl. Disc. Data 4 2010 Article No. 14
    • (2010) ACM Trans. Knowl. Disc. Data , vol.4
    • Zhang, Y.1    Zhou, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.