-
1
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
Battiti, R., 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5, 537-550.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 537-550
-
-
Battiti, R.1
-
2
-
-
84863403768
-
Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
-
Brown, G., Pocock, A., Zhao, M., Lujan, M., 2012. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13, 27-66.
-
(2012)
J. Mach. Learn. Res
, vol.13
, pp. 27-66
-
-
Brown, G.1
Pocock, A.2
Zhao, M.3
Lujan, M.4
-
3
-
-
79954439038
-
Conditional mutual informationbased feature selection analysing for synergy and redundancy
-
Cheng, H., Qin, Z., Feng, C., Wang, Y., Li, F., 2011. Conditional mutual informationbased feature selection analysing for synergy and redundancy. ETRI J. 33, 210-218.
-
(2011)
ETRI J
, vol.33
, pp. 210-218
-
-
Cheng, H.1
Qin, Z.2
Feng, C.3
Wang, Y.4
Li, F.5
-
6
-
-
0003922190
-
-
John Wiley and Sons, New York
-
Duda, R., Hart, P., Stork, D., 2001. Pattern Classification, second ed. John Wiley and Sons, New York.
-
(2001)
Pattern Classification, Second Ed
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
7
-
-
69249238823
-
A powerful feature selection approach based on mutual information
-
El Akadi, A., El Ouardighi, A., Aboutajdine, D., 2008. A powerful feature selection approach based on mutual information. IJCSNS Int. J. Comput. Sci. Network Secur. 8, 116-121.
-
(2008)
IJCSNS Int. J. Comput. Sci. Network Secur
, vol.8
, pp. 116-121
-
-
El Akadi, A.1
El Ouardighi, A.2
Aboutajdine, D.3
-
8
-
-
78649934709
-
-
Irvine, CA, University of California, School of Information and Computer Science
-
Frank, A., Asuncion, A., 2010. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA, University of California, School of Information and Computer Science.
-
(2010)
UCI Machine Learning Repository
-
-
Frank, A.1
Asuncion, A.2
-
9
-
-
33745891586
-
-
Springer, Heidelberg
-
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L., 2006. Feature Extraction Foundations and Applications. Springer, Heidelberg.
-
(2006)
Feature Extraction Foundations and Applications
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.4
-
10
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182.
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
11
-
-
9444253133
-
-
Master thesis, Computer and Information Science, University of Ljubljana. Jakulin, A., 2005. Machine Learning Based on Attribute Interactions. PhD thesis, Computer and Information Science, University of Ljubljana
-
Jakulin, A., 2003. Attribute Interactions in Machine Learning. Master thesis, Computer and Information Science, University of Ljubljana. Jakulin, A., 2005. Machine Learning Based on Attribute Interactions. PhD thesis, Computer and Information Science, University of Ljubljana.
-
(2003)
Attribute Interactions in Machine Learning
-
-
Jakulin, A.1
-
12
-
-
80051574467
-
Feature subset selection problem using wrapper approach in supervised learning
-
Karegowda, A., Jayaram, A.M., Manjunath, A., 2010. Feature subset selection problem using wrapper approach in supervised learning. Int. J. Comput. Appl. 1, 13-17.
-
(2010)
Int. J. Comput. Appl
, vol.1
, pp. 13-17
-
-
Karegowda, A.1
Jayaram, A.M.2
Manjunath, A.3
-
13
-
-
85146422424
-
A practical approach to feature selection. A practical approach to feature selection
-
Machine Learning
-
Kira, K., Rendell, L., 1992. A practical approach to feature selection. A practical approach to feature selection. In: ML92 Proceedings of the Ninth International Workshop on, Machine Learning, pp. 249-256.
-
(1992)
ML92 Proceedings of the Ninth International Workshop on
, pp. 249-256
-
-
Kira, K.1
Rendell, L.2
-
14
-
-
0036127473
-
Input feature selection for classification problems
-
DOI 10.1109/72.977291, PII S1045922702003417
-
Kwak, N., Choi, C., 2002. Input feature selection for classification problems. IEEE Trans. Neural Networks 13, 143-159. (Pubitemid 34236844)
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.1
, pp. 143-159
-
-
Kwak, N.1
Choi, C.-H.2
-
15
-
-
84870668654
-
Feature selection for multi-label classification using multivariate mutual information
-
Lee, J., Kim, D., 2013. Feature selection for multi-label classification using multivariate mutual information. Pattern Recogn. Lett. 34, 349-357.
-
(2013)
Pattern Recogn. Lett
, vol.34
, pp. 349-357
-
-
Lee, J.1
Kim, D.2
-
16
-
-
1842679412
-
Implementing the Fisher's discriminant ratio in a kmeans clustering algorithm for feature selection and data set trimming
-
Lin, T., Li, H., Tsai, K.-C., 2004. Implementing the Fisher's discriminant ratio in a kmeans clustering algorithm for feature selection and data set trimming. J. Chem. Inf. Comput. Sci. 44, 76-87.
-
(2004)
J. Chem. Inf. Comput. Sci
, vol.44
, pp. 76-87
-
-
Lin, T.1
Li, H.2
Tsai, K.-C.3
-
18
-
-
62349118015
-
Feature selection with dynamic mutual information
-
Liu, H., Sun, J., Liu, L., Zhang, H., 2009. Feature selection with dynamic mutual information. Pattern Recogn. 42, 1330-1339.
-
(2009)
Pattern Recogn
, vol.42
, pp. 1330-1339
-
-
Liu, H.1
Sun, J.2
Liu, L.3
Zhang, H.4
-
19
-
-
33745799421
-
On the use of variable complementarity for feature selection in cancer classification
-
DOI 10.1007/11732242-9, Applications of Evolutionary Computing - EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC, Proceedings
-
Meyer, P., Bontempi, G., 2006. On the use of variable complementarity for feature selection in cancer classification. In: Applications of Evolutionary Computing: EvoWorkshops, pp. 91-102. (Pubitemid 44019198)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3907 LNCS
, pp. 91-102
-
-
Meyer, P.E.1
Bontempi, G.2
-
20
-
-
47049102021
-
Information-theoretic feature selection in microarray data using variable complementarily
-
Meyer, P., Schretter, C., Bontempi, G., 2008. Information-theoretic feature selection in microarray data using variable complementarily. IEEE J. Sel. Top. Signal Process. 2, 261-274.
-
(2008)
IEEE J. Sel. Top. Signal Process
, vol.2
, pp. 261-274
-
-
Meyer, P.1
Schretter, C.2
Bontempi, G.3
-
21
-
-
24344458137
-
Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
-
DOI 10.1109/TPAMI.2005.159
-
Peng, H., Long, F., Ding, C., 2005. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226-1238. (Pubitemid 41245053)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
22
-
-
84952503562
-
Thirteen ways to look at the correlation coefficient
-
Rodgers, J., Nicewander, W., 1988. Thirteen ways to look at the correlation coefficient. Am. Stat. 42, 59-66.
-
(1988)
Am. Stat
, vol.42
, pp. 59-66
-
-
Rodgers, J.1
Nicewander, W.2
|