메뉴 건너뛰기




Volumn 31, Issue 2, 2012, Pages 281-305

GMLC: A multi-label feature selection framework for graph classification

Author keywords

Feature selection; Graph classification; Label correlation; Multi label learning; Subgraph pattern

Indexed keywords


EID: 84859904592     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-011-0407-3     Document Type: Article
Times cited : (65)

References (31)
  • 2
    • 70349610382 scopus 로고    scopus 로고
    • PhD thesis, Ludwig-Maximilians-University Munich
    • Borgwardt KM (2007) Graph Kernels. PhD thesis, Ludwig-Maximilians-University Munich.
    • (2007) Graph Kernels
    • Borgwardt, K.M.1
  • 4
    • 70349972757 scopus 로고    scopus 로고
    • Graph OLAP: a multi-dimensional framework for graph data analysis
    • Chen C, Yan X, Zhu F, Han J, Yu P (2009) Graph OLAP: a multi-dimensional framework for graph data analysis. Knowl Inf Syst 21(1): 41-63.
    • (2009) Knowl Inf Syst , vol.21 , Issue.1 , pp. 41-63
    • Chen, C.1    Yan, X.2    Zhu, F.3    Han, J.4    Yu, P.5
  • 6
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Elisseeff A, Weston J (2002) A kernel method for multi-labelled classification. Adv Neural Inf Process Syst 14: 681-687.
    • (2002) Adv Neural Inf Process Syst , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 10
    • 0035113097 scopus 로고    scopus 로고
    • The predictive toxicology challenge 2000-2001
    • Helma C, King R, Kramer S, Srinivasan A (2001) The predictive toxicology challenge 2000-2001. Bioinformatics 17(1): 107-108.
    • (2001) Bioinformatics , vol.17 , Issue.1 , pp. 107-108
    • Helma, C.1    King, R.2    Kramer, S.3    Srinivasan, A.4
  • 13
    • 85105893907 scopus 로고    scopus 로고
    • An efficient graph-mining method for complicated and noisy data with real-world applications
    • Jia Y, Tao J, Huan J (2011) An efficient graph-mining method for complicated and noisy data with real-world applications. Knowl Inf Syst, pp 1-25.
    • (2011) Knowl Inf Syst , pp. 1-25
    • Jia, Y.1    Tao, J.2    Huan, J.3
  • 21
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: a boosting-based system for text categorization
    • Schapire RE, Singer Y (2000) Boostexter: a boosting-based system for text categorization. Mach Learn 39(2-3): 135-168.
    • (2000) Mach Learn , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 25
    • 84898954552 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • Ueda N, Saito K (2003) Parametric mixture models for multi-labeled text. Adv Neural Inf Process Syst 13: 721-728.
    • (2003) Adv Neural Inf Process Syst , vol.13 , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 28
    • 84859898241 scopus 로고    scopus 로고
    • On link privacy in randomizing social networks
    • Ying X, Wu X (2010) On link privacy in randomizing social networks. Knowl Inf Syst, pp 1-19.
    • (2010) Knowl Inf Syst , pp. 1-19
    • Ying, X.1    Wu, X.2
  • 29
    • 33947681316 scopus 로고    scopus 로고
    • Ml-knn: a lazy learning approach to multi-label learning
    • Zhang M-L, Zhou Z-H (2007) Ml-knn: a lazy learning approach to multi-label learning. Pattern Recognit 40(7): 2038-2048.
    • (2007) Pattern Recognit , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.