메뉴 건너뛰기




Volumn 7986 LNBI, Issue , 2013, Pages 13-22

Inferring gene regulatory networks from time-series expressions using random forests ensemble

Author keywords

gene regulation; Gene regulatory networks; multivariate auto regression; Random forests; regression trees; time series gene expression data

Indexed keywords

BAYESIAN NETWORKS; BIOINFORMATICS; DECISION TREES; ORDINARY DIFFERENTIAL EQUATIONS; PATTERN RECOGNITION; RANDOM FORESTS; TIME SERIES; YEAST;

EID: 84880705559     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-39159-0_2     Document Type: Conference Paper
Times cited : (19)

References (25)
  • 1
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks
    • Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks. Bioinformatics 19(17), 2271-2282 (2003)
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 2
    • 46249112705 scopus 로고    scopus 로고
    • Boolean network models of cellular regulation: prospects and limitations
    • Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations. Journal of the Royal Society Interface 5(suppl. 1), S85-S94 (2008)
    • (2008) Journal of the Royal Society Interface , vol.5 , Issue.SUPPL. 1
    • Bornholdt, S.1
  • 3
    • 38549107133 scopus 로고    scopus 로고
    • Comparison of probabilistic boolean network and dynamic bayesian network approaches for inferring gene regulatory networks
    • Li, P., Zhang, C., Perkins, E.J., Gong, P., Deng, Y.: Comparison of probabilistic boolean network and dynamic bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 8(suppl. 7), S13 (2007)
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 7
    • Li, P.1    Zhang, C.2    Perkins, E.J.3    Gong, P.4    Deng, Y.5
  • 4
    • 85145635829 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from gene expression data
    • Filkov, V.: Identifying gene regulatory networks from gene expression data. Handbook of Computational Molecular Biology, 27-1 (2005)
    • (2005) Handbook of Computational Molecular Biology , pp. 27-31
    • Filkov, V.1
  • 5
    • 70349339191 scopus 로고    scopus 로고
    • Probabilistic approximations of signaling pathway dynamics
    • Degano, P., Gorrieri, R. (eds.) Springer, Heidelberg, CMSB 2009
    • Liu, B., Thiagarajan, P.S., Hsu, D.: Probabilistic approximations of signaling pathway dynamics. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS (LNBI), vol. 5688, pp. 251-265. Springer, Heidelberg (2009)
    • (2009) LNCS (LNBI) , vol.5688 , pp. 251-265
    • Liu, B.1    Thiagarajan, P.S.2    Hsu, D.3
  • 6
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic bayesian networks
    • Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic bayesian networks. Briefings in Bioinformatics 4(3), 228-235 (2003)
    • (2003) Briefings in Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 8
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • Zoppoli, P., Morganella, S., Ceccarelli, M.: TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. Bmc Bioinformatics 11(1), 154 (2010)
    • (2010) Bmc Bioinformatics , vol.11 , Issue.1 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 10
    • 84871878774 scopus 로고    scopus 로고
    • Stability of building gene regulatory networks with sparse autoregressive models
    • Rajapakse, J.C., Mundra, P.A.: Stability of building gene regulatory networks with sparse autoregressive models. BMC Bioinformatics 12(suppl. 13), S17 (2011)
    • (2011) BMC Bioinformatics , vol.12 , Issue.SUPPL. 13
    • Rajapakse, J.C.1    Mundra, P.A.2
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 15
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS One 5(9), e12776 (2010)
    • (2010) PLoS One , vol.5 , Issue.9
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 18
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barab́asi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509-512 (1999)
    • (1999) Science , vol.286 , Issue.5439 , pp. 509-512
    • Barab́asi, A.L.1    Albert, R.2
  • 19
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • Marbach, D., Schaffter, T., Mattiussi, C., Floreano, D.: Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology 16(2), 229-239 (2009)
    • (2009) Journal of Computational Biology , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Floreano, D.4
  • 23
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal, M., Della Gatta, G., Di Bernardo, D.: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22(7), 815-822 (2006)
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 815-822
    • Bansal, M.1    Della Gatta, G.2    Di Bernardo, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.