-
1
-
-
85032751772
-
Reverse engineering gene regulatory networks
-
2763329, 20046885
-
Huang Y, Tienda-Luna I, Wang Y. Reverse engineering gene regulatory networks. IEEE Signal Processing Magazine 2009, 26:76-97. 2763329, 20046885.
-
(2009)
IEEE Signal Processing Magazine
, vol.26
, pp. 76-97
-
-
Huang, Y.1
Tienda-Luna, I.2
Wang, Y.3
-
2
-
-
70549083891
-
Inference of gene regulatory networks using time-series data: a survey
-
Chao S, Hua J, Jung S. Inference of gene regulatory networks using time-series data: a survey. A Survey. Current Genomics 2009, 10:416-429.
-
(2009)
A Survey. Current Genomics
, vol.10
, pp. 416-429
-
-
Chao, S.1
Hua, J.2
Jung, S.3
-
3
-
-
65749102238
-
Machine learning and genetic regulatory networks: a review and a roadmap
-
Stoneham: Butterworth-Heinemann, Springer Verlag, Hassanien AE, Abraham A, Vasilakos A, Pedrycz W
-
Fogelberg C, Palade V. Machine learning and genetic regulatory networks: a review and a roadmap. Foundations of Computational Intelligence 2009, Stoneham: Butterworth-Heinemann, Springer Verlag, Hassanien AE, Abraham A, Vasilakos A, Pedrycz W.
-
(2009)
Foundations of Computational Intelligence
-
-
Fogelberg, C.1
Palade, V.2
-
4
-
-
0842309206
-
Inferring gene networks from time series microarray data using dynamic Bayesian networks
-
10.1093/bib/4.3.228, 14582517
-
Kim S, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 2003, 4(3):228-235. 10.1093/bib/4.3.228, 14582517.
-
(2003)
Briefings in Bioinformatics
, vol.4
, Issue.3
, pp. 228-235
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
5
-
-
38549107133
-
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
-
10.1186/1471-2105-8-S7-S13, 2099481, 18047712
-
Li P, Zhang C, Perkins E, Gong P, Deng Y. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 2007, 8(Suppl 7):S13. 10.1186/1471-2105-8-S7-S13, 2099481, 18047712.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 7
-
-
Li, P.1
Zhang, C.2
Perkins, E.3
Gong, P.4
Deng, Y.5
-
6
-
-
35748964479
-
Modeling gene expression regulatory networks with the sparse vector autoregressive model
-
10.1186/1752-0509-1-39, 2048982, 17761000
-
Fujita A, Sato J, Garay-Malpartida H, Yamaguchi R, Miyano S, Sogayar M, Ferreira C. Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biology 2007, 1:39. 10.1186/1752-0509-1-39, 2048982, 17761000.
-
(2007)
BMC Systems Biology
, vol.1
, pp. 39
-
-
Fujita, A.1
Sato, J.2
Garay-Malpartida, H.3
Yamaguchi, R.4
Miyano, S.5
Sogayar, M.6
Ferreira, C.7
-
7
-
-
66749164082
-
Recursive regularization for inferring gene networks from time-course gene expression profiles
-
10.1186/1752-0509-3-41, 2686685, 19386091
-
Shimamura T, Imoto S, Yamaguchi R, Fujita A, Nagasaki M, Miyano S. Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology 2009, 3:41. 10.1186/1752-0509-3-41, 2686685, 19386091.
-
(2009)
BMC Systems Biology
, vol.3
, pp. 41
-
-
Shimamura, T.1
Imoto, S.2
Yamaguchi, R.3
Fujita, A.4
Nagasaki, M.5
Miyano, S.6
-
8
-
-
0036207347
-
Modeling and simulation of genetic regulatory systems : a literature review
-
10.1089/10665270252833208, 11911796
-
de Jong H. Modeling and simulation of genetic regulatory systems : a literature review. Journal of Computational Biology 2002, 9:67-103. 10.1089/10665270252833208, 11911796.
-
(2002)
Journal of Computational Biology
, vol.9
, pp. 67-103
-
-
de Jong, H.1
-
9
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
10.1089/106652700750050961, 11108481
-
Friedman N, Linia M, Nachman I, Peér D. Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000, 7(3-4):601-620. 10.1089/106652700750050961, 11108481.
-
(2000)
Journal of Computational Biology
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linia, M.2
Nachman, I.3
Peér, D.4
-
10
-
-
34547788797
-
Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks
-
10.1186/1471-2105-8-S5-S2, 2230503, 18269696
-
Ferrazzi F, Sebastiani P, Ramoni M, Bellazzi R. Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks. BMC Bioinformatics 2007, 8(Suppl 5):S2. 10.1186/1471-2105-8-S5-S2, 2230503, 18269696.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 5
-
-
Ferrazzi, F.1
Sebastiani, P.2
Ramoni, M.3
Bellazzi, R.4
-
11
-
-
0004158155
-
Modelling gene expression data using dynamic bayesian networks
-
Murphy K, Mian S. Modelling gene expression data using dynamic bayesian networks. Tech. rep 1999,
-
(1999)
Tech. rep
-
-
Murphy, K.1
Mian, S.2
-
13
-
-
33748654580
-
Inferring gene regulatory networks from time series data using the minimum description length principle
-
10.1093/bioinformatics/btl364, 16845143
-
Zhao W, Serpedin E, Dougherty E. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 2006, 22(17):2129-2135. 10.1093/bioinformatics/btl364, 16845143.
-
(2006)
Bioinformatics
, vol.22
, Issue.17
, pp. 2129-2135
-
-
Zhao, W.1
Serpedin, E.2
Dougherty, E.3
-
14
-
-
78650901444
-
Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 Challenge
-
10.1371/journal.pone.0014147, 3004794, 21188141
-
Menéndez P, Kourmpetis Y, ter Braak C, van Eeuwijk F. Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 Challenge. PLOS One 2010, 5(12):e14147. 10.1371/journal.pone.0014147, 3004794, 21188141.
-
(2010)
PLOS One
, vol.5
, Issue.12
-
-
Menéndez, P.1
Kourmpetis, Y.2
ter Braak, C.3
van Eeuwijk, F.4
-
15
-
-
79951965650
-
Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes
-
10.1093/bioinformatics/btq711, 21177328
-
Grzegorczyk M, Husmeier D. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Bioinformatics 2011, 27(5):693-699. 10.1093/bioinformatics/btq711, 21177328.
-
(2011)
Bioinformatics
, vol.27
, Issue.5
, pp. 693-699
-
-
Grzegorczyk, M.1
Husmeier, D.2
-
16
-
-
34547852213
-
Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method
-
10.1093/bioinformatics/btm151, 17463021
-
Fujita A, Sato J, Garay-Malpartida H, Morettin P, Sogayar M, Ferreira C. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 2007, 23(13):1623-1630. 10.1093/bioinformatics/btm151, 17463021.
-
(2007)
Bioinformatics
, vol.23
, Issue.13
, pp. 1623-1630
-
-
Fujita, A.1
Sato, J.2
Garay-Malpartida, H.3
Morettin, P.4
Sogayar, M.5
Ferreira, C.6
-
17
-
-
34548538013
-
Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge
-
10.1186/1752-0509-1-11, 1839889, 17408501
-
Geier F, Timmer J, Fleck C. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Systems Biology 2007, 1:11. 10.1186/1752-0509-1-11, 1839889, 17408501.
-
(2007)
BMC Systems Biology
, vol.1
, pp. 11
-
-
Geier, F.1
Timmer, J.2
Fleck, C.3
-
18
-
-
0035985177
-
Identification of genes periodically expressed in the human cell cycle and their expression in tumors
-
10.1091/mbc.02-02-0030., 117619, 12058064
-
Whitfield M, Sherlock G, Saldanha A, Murray J, Ball C, Alexander K, Matese J, Perou C, Hurt M, Brown P, Botstein D. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell 2002, 13(6):1977-2000. 10.1091/mbc.02-02-0030., 117619, 12058064.
-
(2002)
Molecular Biology of the Cell
, vol.13
, Issue.6
, pp. 1977-2000
-
-
Whitfield, M.1
Sherlock, G.2
Saldanha, A.3
Murray, J.4
Ball, C.5
Alexander, K.6
Matese, J.7
Perou, C.8
Hurt, M.9
Brown, P.10
Botstein, D.11
-
19
-
-
0003684449
-
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
Springer, 2
-
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2001, Springer, 2.
-
(2001)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
20
-
-
0038483826
-
Emergence of scaling in random networks
-
10.1126/science.286.5439.509, 10521342
-
Barabasi A, Albert R. Emergence of scaling in random networks. Science 1999, 286:509-512. 10.1126/science.286.5439.509, 10521342.
-
(1999)
Science
, vol.286
, pp. 509-512
-
-
Barabasi, A.1
Albert, R.2
-
21
-
-
84871881076
-
Igraph: Network analysis and visualization
-
Csardi G, Nepusz T. igraph: Network analysis and visualization. , http://cran.r-project.org/web/packages/igraph/index.html
-
-
-
Csardi, G.1
Nepusz, T.2
-
22
-
-
77953166503
-
Glmnet: Lasso and elastic-net regularized generalized linear models
-
Friedman J, Hastie T, Tibshirani R. glmnet: Lasso and elastic-net regularized generalized linear models. , http://cran.r-project.org/web/packages/glmnet/index.html
-
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
23
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of Royal Statistical Society: Series B 1995, 57:289-300.
-
(1995)
Journal of Royal Statistical Society: Series B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
26
-
-
79951843773
-
Noxa mediates p18INK4c cell-cycle control of homeostasis in B cells and plasma cell precursors
-
10.1182/blood-2010-06-288027, 3062327, 21163929
-
Bretz J, Garcia J, Huang X, Kang L, Zhang Y, Toellner KM, Chen-Kiang S. Noxa mediates p18INK4c cell-cycle control of homeostasis in B cells and plasma cell precursors. Blood 2011, 117(7):2179-2188. 10.1182/blood-2010-06-288027, 3062327, 21163929.
-
(2011)
Blood
, vol.117
, Issue.7
, pp. 2179-2188
-
-
Bretz, J.1
Garcia, J.2
Huang, X.3
Kang, L.4
Zhang, Y.5
Toellner, K.M.6
Chen-Kiang, S.7
-
27
-
-
0033001902
-
Cell cycle regulation and induction of apoptosis by IL-6 variants on the multiple myeloma cell line XG-1
-
10.1007/s002770050465, 10037263
-
Petrucci M, Ricciardi M, Ariola C, Gregorj C, Ribersani M, Savino R, Ciliberto G, Tafuri A. Cell cycle regulation and induction of apoptosis by IL-6 variants on the multiple myeloma cell line XG-1. Annals of Hematology 1999, 78:13-18. 10.1007/s002770050465, 10037263.
-
(1999)
Annals of Hematology
, vol.78
, pp. 13-18
-
-
Petrucci, M.1
Ricciardi, M.2
Ariola, C.3
Gregorj, C.4
Ribersani, M.5
Savino, R.6
Ciliberto, G.7
Tafuri, A.8
-
28
-
-
0036362236
-
Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth
-
Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. cellular and molecular medicine 2002, 6:1-12.
-
(2002)
J. cellular and molecular medicine
, vol.6
, pp. 1-12
-
-
Lawler, J.1
-
29
-
-
0033621107
-
Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division
-
Uren A, Beilharz T, O'connell M, Bugg S, Driel RV, Vaux D, Lithgow T. Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proceedings of National Academy of Science 1999, 96:10170-10175.
-
(1999)
Proceedings of National Academy of Science
, vol.96
, pp. 10170-10175
-
-
Uren, A.1
Beilharz, T.2
O'connell, M.3
Bugg, S.4
Driel, R.V.5
Vaux, D.6
Lithgow, T.7
|