메뉴 건너뛰기




Volumn 12, Issue SUPPL. 13, 2011, Pages

Stability of building gene regulatory networks with sparse autoregressive models

Author keywords

[No Author keywords available]

Indexed keywords

AUTO REGRESSIVE MODELS; AUTO-REGRESSIVE; BIOLOGICAL NETWORKS; CELL CYCLE; COMPUTATIONAL TECHNIQUE; ELASTIC NET; FALSE NEGATIVES; FALSE POSITIVE; GENE EXPRESSION DATA; GENE EXPRESSION DATASETS; GENE REGULATORY NETWORKS; IN-BUILDINGS; LIFE-SCIENCES; RANDOM PERTURBATIONS; SCALE-FREE TOPOLOGIES; STABLE NETWORK; SYNTHETIC DATA; TIME POINTS;

EID: 84864044483     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-12-S13-S17     Document Type: Article
Times cited : (12)

References (31)
  • 2
    • 70549083891 scopus 로고    scopus 로고
    • Inference of gene regulatory networks using time-series data: a survey
    • Chao S, Hua J, Jung S. Inference of gene regulatory networks using time-series data: a survey. A Survey. Current Genomics 2009, 10:416-429.
    • (2009) A Survey. Current Genomics , vol.10 , pp. 416-429
    • Chao, S.1    Hua, J.2    Jung, S.3
  • 3
    • 65749102238 scopus 로고    scopus 로고
    • Machine learning and genetic regulatory networks: a review and a roadmap
    • Stoneham: Butterworth-Heinemann, Springer Verlag, Hassanien AE, Abraham A, Vasilakos A, Pedrycz W
    • Fogelberg C, Palade V. Machine learning and genetic regulatory networks: a review and a roadmap. Foundations of Computational Intelligence 2009, Stoneham: Butterworth-Heinemann, Springer Verlag, Hassanien AE, Abraham A, Vasilakos A, Pedrycz W.
    • (2009) Foundations of Computational Intelligence
    • Fogelberg, C.1    Palade, V.2
  • 4
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • 10.1093/bib/4.3.228, 14582517
    • Kim S, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 2003, 4(3):228-235. 10.1093/bib/4.3.228, 14582517.
    • (2003) Briefings in Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 5
    • 38549107133 scopus 로고    scopus 로고
    • Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
    • 10.1186/1471-2105-8-S7-S13, 2099481, 18047712
    • Li P, Zhang C, Perkins E, Gong P, Deng Y. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 2007, 8(Suppl 7):S13. 10.1186/1471-2105-8-S7-S13, 2099481, 18047712.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 7
    • Li, P.1    Zhang, C.2    Perkins, E.3    Gong, P.4    Deng, Y.5
  • 6
    • 35748964479 scopus 로고    scopus 로고
    • Modeling gene expression regulatory networks with the sparse vector autoregressive model
    • 10.1186/1752-0509-1-39, 2048982, 17761000
    • Fujita A, Sato J, Garay-Malpartida H, Yamaguchi R, Miyano S, Sogayar M, Ferreira C. Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biology 2007, 1:39. 10.1186/1752-0509-1-39, 2048982, 17761000.
    • (2007) BMC Systems Biology , vol.1 , pp. 39
    • Fujita, A.1    Sato, J.2    Garay-Malpartida, H.3    Yamaguchi, R.4    Miyano, S.5    Sogayar, M.6    Ferreira, C.7
  • 7
    • 66749164082 scopus 로고    scopus 로고
    • Recursive regularization for inferring gene networks from time-course gene expression profiles
    • 10.1186/1752-0509-3-41, 2686685, 19386091
    • Shimamura T, Imoto S, Yamaguchi R, Fujita A, Nagasaki M, Miyano S. Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology 2009, 3:41. 10.1186/1752-0509-3-41, 2686685, 19386091.
    • (2009) BMC Systems Biology , vol.3 , pp. 41
    • Shimamura, T.1    Imoto, S.2    Yamaguchi, R.3    Fujita, A.4    Nagasaki, M.5    Miyano, S.6
  • 8
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems : a literature review
    • 10.1089/10665270252833208, 11911796
    • de Jong H. Modeling and simulation of genetic regulatory systems : a literature review. Journal of Computational Biology 2002, 9:67-103. 10.1089/10665270252833208, 11911796.
    • (2002) Journal of Computational Biology , vol.9 , pp. 67-103
    • de Jong, H.1
  • 9
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • 10.1089/106652700750050961, 11108481
    • Friedman N, Linia M, Nachman I, Peér D. Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000, 7(3-4):601-620. 10.1089/106652700750050961, 11108481.
    • (2000) Journal of Computational Biology , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linia, M.2    Nachman, I.3    Peér, D.4
  • 10
    • 34547788797 scopus 로고    scopus 로고
    • Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks
    • 10.1186/1471-2105-8-S5-S2, 2230503, 18269696
    • Ferrazzi F, Sebastiani P, Ramoni M, Bellazzi R. Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks. BMC Bioinformatics 2007, 8(Suppl 5):S2. 10.1186/1471-2105-8-S5-S2, 2230503, 18269696.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 5
    • Ferrazzi, F.1    Sebastiani, P.2    Ramoni, M.3    Bellazzi, R.4
  • 11
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic bayesian networks
    • Murphy K, Mian S. Modelling gene expression data using dynamic bayesian networks. Tech. rep 1999,
    • (1999) Tech. rep
    • Murphy, K.1    Mian, S.2
  • 12
    • 77956342095 scopus 로고    scopus 로고
    • Building gene networks with time-delayed regulations
    • Chaturvedi I, Rajapakse JC. Building gene networks with time-delayed regulations. Pattern Recognition Letters 2010, 31:2133-2137.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 2133-2137
    • Chaturvedi, I.1    Rajapakse, J.C.2
  • 13
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • 10.1093/bioinformatics/btl364, 16845143
    • Zhao W, Serpedin E, Dougherty E. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 2006, 22(17):2129-2135. 10.1093/bioinformatics/btl364, 16845143.
    • (2006) Bioinformatics , vol.22 , Issue.17 , pp. 2129-2135
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.3
  • 14
    • 78650901444 scopus 로고    scopus 로고
    • Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 Challenge
    • 10.1371/journal.pone.0014147, 3004794, 21188141
    • Menéndez P, Kourmpetis Y, ter Braak C, van Eeuwijk F. Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 Challenge. PLOS One 2010, 5(12):e14147. 10.1371/journal.pone.0014147, 3004794, 21188141.
    • (2010) PLOS One , vol.5 , Issue.12
    • Menéndez, P.1    Kourmpetis, Y.2    ter Braak, C.3    van Eeuwijk, F.4
  • 15
    • 79951965650 scopus 로고    scopus 로고
    • Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes
    • 10.1093/bioinformatics/btq711, 21177328
    • Grzegorczyk M, Husmeier D. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Bioinformatics 2011, 27(5):693-699. 10.1093/bioinformatics/btq711, 21177328.
    • (2011) Bioinformatics , vol.27 , Issue.5 , pp. 693-699
    • Grzegorczyk, M.1    Husmeier, D.2
  • 16
    • 34547852213 scopus 로고    scopus 로고
    • Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method
    • 10.1093/bioinformatics/btm151, 17463021
    • Fujita A, Sato J, Garay-Malpartida H, Morettin P, Sogayar M, Ferreira C. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 2007, 23(13):1623-1630. 10.1093/bioinformatics/btm151, 17463021.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1623-1630
    • Fujita, A.1    Sato, J.2    Garay-Malpartida, H.3    Morettin, P.4    Sogayar, M.5    Ferreira, C.6
  • 17
    • 34548538013 scopus 로고    scopus 로고
    • Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge
    • 10.1186/1752-0509-1-11, 1839889, 17408501
    • Geier F, Timmer J, Fleck C. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Systems Biology 2007, 1:11. 10.1186/1752-0509-1-11, 1839889, 17408501.
    • (2007) BMC Systems Biology , vol.1 , pp. 11
    • Geier, F.1    Timmer, J.2    Fleck, C.3
  • 19
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • Springer, 2
    • Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2001, Springer, 2.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 20
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • 10.1126/science.286.5439.509, 10521342
    • Barabasi A, Albert R. Emergence of scaling in random networks. Science 1999, 286:509-512. 10.1126/science.286.5439.509, 10521342.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.1    Albert, R.2
  • 21
    • 84871881076 scopus 로고    scopus 로고
    • Igraph: Network analysis and visualization
    • Csardi G, Nepusz T. igraph: Network analysis and visualization. , http://cran.r-project.org/web/packages/igraph/index.html
    • Csardi, G.1    Nepusz, T.2
  • 22
    • 77953166503 scopus 로고    scopus 로고
    • Glmnet: Lasso and elastic-net regularized generalized linear models
    • Friedman J, Hastie T, Tibshirani R. glmnet: Lasso and elastic-net regularized generalized linear models. , http://cran.r-project.org/web/packages/glmnet/index.html
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 23
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of Royal Statistical Society: Series B 1995, 57:289-300.
    • (1995) Journal of Royal Statistical Society: Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 25
    • 34548536008 scopus 로고    scopus 로고
    • On the degrees of freedom of the lasso
    • Zou H, Hastie T, Tibshirani R. On the degrees of freedom of the lasso. Annals of Statistics 2007, 35(5):2173-2192.
    • (2007) Annals of Statistics , vol.35 , Issue.5 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 26
    • 79951843773 scopus 로고    scopus 로고
    • Noxa mediates p18INK4c cell-cycle control of homeostasis in B cells and plasma cell precursors
    • 10.1182/blood-2010-06-288027, 3062327, 21163929
    • Bretz J, Garcia J, Huang X, Kang L, Zhang Y, Toellner KM, Chen-Kiang S. Noxa mediates p18INK4c cell-cycle control of homeostasis in B cells and plasma cell precursors. Blood 2011, 117(7):2179-2188. 10.1182/blood-2010-06-288027, 3062327, 21163929.
    • (2011) Blood , vol.117 , Issue.7 , pp. 2179-2188
    • Bretz, J.1    Garcia, J.2    Huang, X.3    Kang, L.4    Zhang, Y.5    Toellner, K.M.6    Chen-Kiang, S.7
  • 27
    • 0033001902 scopus 로고    scopus 로고
    • Cell cycle regulation and induction of apoptosis by IL-6 variants on the multiple myeloma cell line XG-1
    • 10.1007/s002770050465, 10037263
    • Petrucci M, Ricciardi M, Ariola C, Gregorj C, Ribersani M, Savino R, Ciliberto G, Tafuri A. Cell cycle regulation and induction of apoptosis by IL-6 variants on the multiple myeloma cell line XG-1. Annals of Hematology 1999, 78:13-18. 10.1007/s002770050465, 10037263.
    • (1999) Annals of Hematology , vol.78 , pp. 13-18
    • Petrucci, M.1    Ricciardi, M.2    Ariola, C.3    Gregorj, C.4    Ribersani, M.5    Savino, R.6    Ciliberto, G.7    Tafuri, A.8
  • 28
    • 0036362236 scopus 로고    scopus 로고
    • Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth
    • Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. cellular and molecular medicine 2002, 6:1-12.
    • (2002) J. cellular and molecular medicine , vol.6 , pp. 1-12
    • Lawler, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.