-
3
-
-
22144493866
-
Negative and positive regulation of HIF-1: a complex network
-
Bardos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta. 2005;1755:107-20.
-
(2005)
Biochim Biophys Acta
, vol.1755
, pp. 107-120
-
-
Bardos, J.I.1
Ashcroft, M.2
-
4
-
-
84873865047
-
From bevacizumab to tasquinimod: angiogenesis as a therapeutic target in prostate cancer
-
Schweizer MT, Carducci MA. From bevacizumab to tasquinimod: angiogenesis as a therapeutic target in prostate cancer. Cancer J. 2013;19:99-106.
-
(2013)
Cancer J
, vol.19
, pp. 99-106
-
-
Schweizer, M.T.1
Carducci, M.A.2
-
5
-
-
68549104124
-
Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases
-
Dong JT, Chen C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci. 2009;66:2691-706.
-
(2009)
Cell Mol Life Sci
, vol.66
, pp. 2691-2706
-
-
Dong, J.T.1
Chen, C.2
-
6
-
-
0035740250
-
Chromosomal deletions and tumor suppressor genes in prostate cancer
-
Dong JT. Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev. 2001;20:173-93.
-
(2001)
Cancer Metastasis Rev
, vol.20
, pp. 173-193
-
-
Dong, J.T.1
-
7
-
-
79954557105
-
Estrogen regulates tumor growth through a nonclassical pathway that includes the transcription factors ERbeta and KLF5
-
ra22.
-
Nakajima Y, Akaogi K, Suzuki T, Osakabe A, Yamaguchi C, Sunahara N, et al. Estrogen regulates tumor growth through a nonclassical pathway that includes the transcription factors ERbeta and KLF5. Sci Signal. 2011;4:ra22.
-
(2011)
Sci Signal.
, vol.4
-
-
Nakajima, Y.1
Akaogi, K.2
Suzuki, T.3
Osakabe, A.4
Yamaguchi, C.5
Sunahara, N.6
-
8
-
-
84911003521
-
Interruption of KLF5 acetylation converts its function from tumor suppressor to tumor promoter in prostate cancer cells
-
Li X, Zhang B, Wu Q, Ci X, Zhao R, Zhang Z, et al. Interruption of KLF5 acetylation converts its function from tumor suppressor to tumor promoter in prostate cancer cells. Int J Cancer. 2014;136:536-46.
-
(2014)
Int J Cancer
, vol.136
, pp. 536-546
-
-
Li, X.1
Zhang, B.2
Wu, Q.3
Ci, X.4
Zhao, R.5
Zhang, Z.6
-
9
-
-
84987932334
-
Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways
-
Xing C, Ci X, Sun X, Fu X, Zhang Z, Dong EN, et al. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways. Neoplasia. 2014;16:883-99.
-
(2014)
Neoplasia
, vol.16
, pp. 883-899
-
-
Xing, C.1
Ci, X.2
Sun, X.3
Fu, X.4
Zhang, Z.5
Dong, E.N.6
-
10
-
-
0036347210
-
Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling
-
Shindo T, Manabe I, Fukushima Y, Tobe K, Aizawa K, Miyamoto S, et al. Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med. 2002;8:856-63.
-
(2002)
Nat Med
, vol.8
, pp. 856-863
-
-
Shindo, T.1
Manabe, I.2
Fukushima, Y.3
Tobe, K.4
Aizawa, K.5
Miyamoto, S.6
-
11
-
-
80955181154
-
Conditional disruption of mouse Klf5 results in defective eyelids with malformed meibomian glands, abnormal cornea and loss of conjunctival goblet cells
-
Kenchegowda D, Swamynathan S, Gupta D, Wan H, Whitsett J, Swamynathan SK. Conditional disruption of mouse Klf5 results in defective eyelids with malformed meibomian glands, abnormal cornea and loss of conjunctival goblet cells. Dev Biol. 2011;356:5-18.
-
(2011)
Dev Biol
, vol.356
, pp. 5-18
-
-
Kenchegowda, D.1
Swamynathan, S.2
Gupta, D.3
Wan, H.4
Whitsett, J.5
Swamynathan, S.K.6
-
12
-
-
84866427428
-
Critical role of Klf5 in regulating gene expression during post-eyelid opening maturation of mouse corneas
-
Kenchegowda D, Harvey SA, Swamynathan S, Lathrop KL, Swamynathan SK. Critical role of Klf5 in regulating gene expression during post-eyelid opening maturation of mouse corneas. PLoS One. 2012;7, e44771.
-
(2012)
PLoS One
, vol.7
-
-
Kenchegowda, D.1
Harvey, S.A.2
Swamynathan, S.3
Lathrop, K.L.4
Swamynathan, S.K.5
-
13
-
-
10744222860
-
Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer
-
Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209-21.
-
(2003)
Cancer Cell
, vol.4
, pp. 209-221
-
-
Wang, S.1
Gao, J.2
Lei, Q.3
Rozengurt, N.4
Pritchard, C.5
Jiao, J.6
-
15
-
-
70649088038
-
Kinases as upstream regulators of the HIF system: their emerging potential as anti-cancer drug targets
-
Dimova EY, Michiels C, Kietzmann T. Kinases as upstream regulators of the HIF system: their emerging potential as anti-cancer drug targets. Curr Pharm Des. 2009;15:3867-77.
-
(2009)
Curr Pharm Des
, vol.15
, pp. 3867-3877
-
-
Dimova, E.Y.1
Michiels, C.2
Kietzmann, T.3
-
16
-
-
34247537548
-
Hypoxia-inducible factor (HIF) in human tumorigenesis
-
Mabjeesh NJ, Amir S. Hypoxia-inducible factor (HIF) in human tumorigenesis. Histol Histopathol. 2007;22:559-72.
-
(2007)
Histol Histopathol
, vol.22
, pp. 559-572
-
-
Mabjeesh, N.J.1
Amir, S.2
-
17
-
-
84857535891
-
Critical role of hypoxia sensor-HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing
-
Ahluwalia A, Tarnawski AS. Critical role of hypoxia sensor-HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem. 2012;19:90-7.
-
(2012)
Curr Med Chem
, vol.19
, pp. 90-97
-
-
Ahluwalia, A.1
Tarnawski, A.S.2
-
18
-
-
0029761644
-
Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1
-
Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604-13.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 4604-4613
-
-
Forsythe, J.A.1
Jiang, B.H.2
Iyer, N.V.3
Agani, F.4
Leung, S.W.5
Koos, R.D.6
-
19
-
-
44149090296
-
Role of platelet-derived growth factors in physiology and medicine
-
Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276-312.
-
(2008)
Genes Dev
, vol.22
, pp. 1276-1312
-
-
Andrae, J.1
Gallini, R.2
Betsholtz, C.3
-
20
-
-
30944442620
-
Hypoxia inducible factor 1-alpha regulates of platelet derived growth factor-B in human glioblastoma cells
-
Yoshida D, Kim K, Noha M, Teramoto A. Hypoxia inducible factor 1-alpha regulates of platelet derived growth factor-B in human glioblastoma cells. J Neurooncol. 2006;76:13-21.
-
(2006)
J Neurooncol
, vol.76
, pp. 13-21
-
-
Yoshida, D.1
Kim, K.2
Noha, M.3
Teramoto, A.4
-
21
-
-
0036330228
-
Downregulation of PTEN/MMAC/TEP1 expression in human prostate cancer cell line DU145 by growth stimuli
-
Bastola DR, Pahwa GS, Lin MF, Cheng PW. Downregulation of PTEN/MMAC/TEP1 expression in human prostate cancer cell line DU145 by growth stimuli. Mol Cell Biochem. 2002;236:75-81.
-
(2002)
Mol Cell Biochem
, vol.236
, pp. 75-81
-
-
Bastola, D.R.1
Pahwa, G.S.2
Lin, M.F.3
Cheng, P.W.4
-
22
-
-
0037405689
-
KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer
-
Chen C, Bhalala HV, Vessella RL, Dong JT. KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate. 2003;55:81-8.
-
(2003)
Prostate
, vol.55
, pp. 81-88
-
-
Chen, C.1
Bhalala, H.V.2
Vessella, R.L.3
Dong, J.T.4
-
23
-
-
18844429239
-
Ubiquitin-proteasome degradation of KLF5 transcription factor in cancer and untransformed epithelial cells
-
Chen C, Sun X, Ran Q, Wilkinson KD, Murphy TJ, Simons JW, et al. Ubiquitin-proteasome degradation of KLF5 transcription factor in cancer and untransformed epithelial cells. Oncogene. 2005;24:3319-27.
-
(2005)
Oncogene
, vol.24
, pp. 3319-3327
-
-
Chen, C.1
Sun, X.2
Ran, Q.3
Wilkinson, K.D.4
Murphy, T.J.5
Simons, J.W.6
-
24
-
-
34147171490
-
Endothelial cell migration during angiogenesis
-
Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100:782-94.
-
(2007)
Circ Res
, vol.100
, pp. 782-794
-
-
Lamalice, L.1
Boeuf, F.2
Huot, J.3
-
25
-
-
33746899015
-
Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway
-
Pore N, Jiang Z, Shu HK, Bernhard E, Kao GD, Maity A. Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol Cancer Res. 2006;4:471-9.
-
(2006)
Mol Cancer Res
, vol.4
, pp. 471-479
-
-
Pore, N.1
Jiang, Z.2
Shu, H.K.3
Bernhard, E.4
Kao, G.D.5
Maity, A.6
-
26
-
-
79955534639
-
MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression
-
Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One. 2011;6, e19139.
-
(2011)
PLoS One
, vol.6
-
-
Liu, L.Z.1
Li, C.2
Chen, Q.3
Jing, Y.4
Carpenter, R.5
Jiang, Y.6
-
27
-
-
0043234256
-
Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells
-
Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, et al. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem. 2003;278:31277-85.
-
(2003)
J Biol Chem
, vol.278
, pp. 31277-31285
-
-
Mottet, D.1
Dumont, V.2
Deccache, Y.3
Demazy, C.4
Ninane, N.5
Raes, M.6
-
28
-
-
34948815127
-
PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis
-
Fang J, Ding M, Yang L, Liu LZ, Jiang BH. PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal. 2007;19:2487-97.
-
(2007)
Cell Signal
, vol.19
, pp. 2487-2497
-
-
Fang, J.1
Ding, M.2
Yang, L.3
Liu, L.Z.4
Jiang, B.H.5
-
29
-
-
0034050050
-
Loss of PTEN facilitates HIF-1-mediated gene expression
-
Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14:391-6.
-
(2000)
Genes Dev
, vol.14
, pp. 391-396
-
-
Zundel, W.1
Schindler, C.2
Haas-Kogan, D.3
Koong, A.4
Kaper, F.5
Chen, E.6
-
30
-
-
84878749367
-
Different expression patterns and functions of acetylated and unacetylated Klf5 in the proliferation and differentiation of prostatic epithelial cells
-
Xing C, Fu X, Sun X, Guo P, Li M, Dong JT. Different expression patterns and functions of acetylated and unacetylated Klf5 in the proliferation and differentiation of prostatic epithelial cells. PLoS One. 2013;8, e65538.
-
(2013)
PLoS One
, vol.8
-
-
Xing, C.1
Fu, X.2
Sun, X.3
Guo, P.4
Li, M.5
Dong, J.T.6
-
31
-
-
84872161627
-
COUP-TFII inhibits TGF-beta-induced growth barrier to promote prostate tumorigenesis
-
Qin J, Wu SP, Creighton CJ, Dai F, Xie X, Cheng CM, et al. COUP-TFII inhibits TGF-beta-induced growth barrier to promote prostate tumorigenesis. Nature. 2013;493:236-40.
-
(2013)
Nature
, vol.493
, pp. 236-240
-
-
Qin, J.1
Wu, S.P.2
Creighton, C.J.3
Dai, F.4
Xie, X.5
Cheng, C.M.6
-
32
-
-
23244460597
-
Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis
-
Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725-30.
-
(2005)
Nature
, vol.436
, pp. 725-730
-
-
Chen, Z.1
Trotman, L.C.2
Shaffer, D.3
Lin, H.K.4
Dotan, Z.A.5
Niki, M.6
-
33
-
-
79951512852
-
SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression
-
Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J, et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011;470:269-73.
-
(2011)
Nature
, vol.470
, pp. 269-273
-
-
Ding, Z.1
Wu, C.J.2
Chu, G.C.3
Xiao, Y.4
Ho, D.5
Zhang, J.6
-
34
-
-
0043244937
-
Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases
-
Abate-Shen C, Banach-Petrosky WA, Sun X, Economides KD, Desai N, Gregg JP, et al. Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res. 2003;63:3886-90.
-
(2003)
Cancer Res
, vol.63
, pp. 3886-3890
-
-
Abate-Shen, C.1
Banach-Petrosky, W.A.2
Sun, X.3
Economides, K.D.4
Desai, N.5
Gregg, J.P.6
-
35
-
-
0034746302
-
Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse
-
Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 2001;27:222-4.
-
(2001)
Nat Genet
, vol.27
, pp. 222-224
-
-
Cristofano, A.1
Acetis, M.2
Koff, A.3
Cordon-Cardo, C.4
Pandolfi, P.P.5
-
36
-
-
77953988924
-
Targeting the tumour vasculature: insights from physiological angiogenesis
-
Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010;10:505-14.
-
(2010)
Nat Rev Cancer
, vol.10
, pp. 505-514
-
-
Chung, A.S.1
Lee, J.2
Ferrara, N.3
-
37
-
-
34247591454
-
Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis
-
Kalin RE, Kretz MP, Meyer AM, Kispert A, Heppner FL, Brandli AW. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol. 2007;305:599-614.
-
(2007)
Dev Biol
, vol.305
, pp. 599-614
-
-
Kalin, R.E.1
Kretz, M.P.2
Meyer, A.M.3
Kispert, A.4
Heppner, F.L.5
Brandli, A.W.6
-
38
-
-
17844388561
-
Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1
-
Desai A, Victor-Vega C, Gadangi S, Montesinos MC, Chu CC, Cronstein BN. Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol Pharmacol. 2005;67:1406-13.
-
(2005)
Mol Pharmacol
, vol.67
, pp. 1406-1413
-
-
Desai, A.1
Victor-Vega, C.2
Gadangi, S.3
Montesinos, M.C.4
Chu, C.C.5
Cronstein, B.N.6
-
39
-
-
77955052559
-
Caffeic acid phenethyl ester is a potent inhibitor of HIF prolyl hydroxylase: structural analysis and pharmacological implication
-
Choi D, Han J, Lee Y, Choi J, Han S, Hong S, et al. Caffeic acid phenethyl ester is a potent inhibitor of HIF prolyl hydroxylase: structural analysis and pharmacological implication. J Nutr Biochem. 2010;21:809-17.
-
(2010)
J Nutr Biochem
, vol.21
, pp. 809-817
-
-
Choi, D.1
Han, J.2
Lee, Y.3
Choi, J.4
Han, S.5
Hong, S.6
-
40
-
-
84907964717
-
A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1alpha and HIF2alpha stability and tumor growth, angiogenesis, and metastasis
-
Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1alpha and HIF2alpha stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res. 2014;12:1520-31.
-
(2014)
Mol Cancer Res
, vol.12
, pp. 1520-1531
-
-
Joshi, S.1
Singh, A.R.2
Zulcic, M.3
Durden, D.L.4
-
42
-
-
0034654174
-
Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics
-
Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000;60:1541-5.
-
(2000)
Cancer Res
, vol.60
, pp. 1541-1545
-
-
Zhong, H.1
Chiles, K.2
Feldser, D.3
Laughner, E.4
Hanrahan, C.5
Georgescu, M.M.6
-
43
-
-
0032894626
-
Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma
-
Giri D, Ittmann M. Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. Hum Pathol. 1999;30:419-24.
-
(1999)
Hum Pathol
, vol.30
, pp. 419-424
-
-
Giri, D.1
Ittmann, M.2
-
44
-
-
33846819952
-
Kruppel-like factor 5 activates MEK/ERK signaling via EGFR in primary squamous epithelial cells
-
Yang Y, Goldstein BG, Nakagawa H, Katz JP. Kruppel-like factor 5 activates MEK/ERK signaling via EGFR in primary squamous epithelial cells. FASEB J. 2007;21:543-50.
-
(2007)
FASEB J
, vol.21
, pp. 543-550
-
-
Yang, Y.1
Goldstein, B.G.2
Nakagawa, H.3
Katz, J.P.4
-
45
-
-
67650522872
-
KLF5 promotes breast cell survival partially through fibroblast growth factor-binding protein 1-pERK-mediated dual specificity MKP-1 protein phosphorylation and stabilization
-
Liu R, Zheng HQ, Zhou Z, Dong JT, Chen C. KLF5 promotes breast cell survival partially through fibroblast growth factor-binding protein 1-pERK-mediated dual specificity MKP-1 protein phosphorylation and stabilization. J Biol Chem. 2009;284:16791-8.
-
(2009)
J Biol Chem
, vol.284
, pp. 16791-16798
-
-
Liu, R.1
Zheng, H.Q.2
Zhou, Z.3
Dong, J.T.4
Chen, C.5
-
46
-
-
84883313474
-
Regulation of hypoxia-inducible factor 1alpha (HIF-1alpha) by lysophosphatidic acid is dependent on interplay between p53 and Kruppel-like factor 5
-
Lee SJ, No YR, Dang DT, Dang LH, Yang VW, Shim H, et al. Regulation of hypoxia-inducible factor 1alpha (HIF-1alpha) by lysophosphatidic acid is dependent on interplay between p53 and Kruppel-like factor 5. J Biol Chem. 2013;288(35):25244-53.
-
(2013)
J Biol Chem
, vol.288
, Issue.35
, pp. 25244-25253
-
-
Lee, S.J.1
No, Y.R.2
Dang, D.T.3
Dang, L.H.4
Yang, V.W.5
Shim, H.6
-
47
-
-
84907463121
-
KLF5 promotes hypoxia-induced survival and inhibits apoptosis in non-small cell lung cancer cells via HIF-1alpha
-
Li X, Liu X, Xu Y, Liu J, Xie M, Ni W, et al. KLF5 promotes hypoxia-induced survival and inhibits apoptosis in non-small cell lung cancer cells via HIF-1alpha. Int J Oncol. 2014;45:1507-14.
-
(2014)
Int J Oncol
, vol.45
, pp. 1507-1514
-
-
Li, X.1
Liu, X.2
Xu, Y.3
Liu, J.4
Xie, M.5
Ni, W.6
-
48
-
-
84878830070
-
MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1alpha
-
Yeh YM, Chuang CM, Chao KC, Wang LH. MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1alpha. Int J Cancer. 2013;133:867-78.
-
(2013)
Int J Cancer
, vol.133
, pp. 867-878
-
-
Yeh, Y.M.1
Chuang, C.M.2
Chao, K.C.3
Wang, L.H.4
-
49
-
-
0032911123
-
Three distinct regions of allelic loss at 13q14, 13q21-22, and 13q33 in prostate cancer
-
Hyytinen ER, Frierson HF, Boyd JC, Chung LW, Dong JT. Three distinct regions of allelic loss at 13q14, 13q21-22, and 13q33 in prostate cancer. Genes Chromosomes Cancer. 1999;25:108-14.
-
(1999)
Genes Chromosomes Cancer
, vol.25
, pp. 108-114
-
-
Hyytinen, E.R.1
Frierson, H.F.2
Boyd, J.C.3
Chung, L.W.4
Dong, J.T.5
-
50
-
-
0034660852
-
Deletion at 13q21 is associated with aggressive prostate cancers
-
Dong JT, Chen C, Stultz BG, Isaacs JT, Frierson Jr HF. Deletion at 13q21 is associated with aggressive prostate cancers. Cancer Res. 2000;60:3880-3.
-
(2000)
Cancer Res
, vol.60
, pp. 3880-3883
-
-
Dong, J.T.1
Chen, C.2
Stultz, B.G.3
Isaacs, J.T.4
Frierson, H.F.5
-
51
-
-
33746930170
-
FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer
-
Dong XY, Chen C, Sun X, Guo P, Vessella RL, Wang RX, et al. FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer. Cancer Res. 2006;66:6998-7006.
-
(2006)
Cancer Res
, vol.66
, pp. 6998-7006
-
-
Dong, X.Y.1
Chen, C.2
Sun, X.3
Guo, P.4
Vessella, R.L.5
Wang, R.X.6
-
52
-
-
84919684630
-
Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data
-
Williams JL, Greer PA, Squire JA. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. Cancer Genet. 2014;207:474-88.
-
(2014)
Cancer Genet
, vol.207
, pp. 474-488
-
-
Williams, J.L.1
Greer, P.A.2
Squire, J.A.3
-
53
-
-
84863723010
-
The mutational landscape of lethal castration-resistant prostate cancer
-
Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239-43.
-
(2012)
Nature
, vol.487
, pp. 239-243
-
-
Grasso, C.S.1
Wu, Y.M.2
Robinson, D.R.3
Cao, X.4
Dhanasekaran, S.M.5
Khan, A.P.6
-
54
-
-
84866002291
-
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
-
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401-4.
-
(2012)
Cancer Discov
, vol.2
, pp. 401-404
-
-
Cerami, E.1
Gao, J.2
Dogrusoz, U.3
Gross, B.E.4
Sumer, S.O.5
Aksoy, B.A.6
-
55
-
-
84875740314
-
Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
-
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.
-
(2013)
Sci Signal.
, vol.6
, pp. l1
-
-
Gao, J.1
Aksoy, B.A.2
Dogrusoz, U.3
Dresdner, G.4
Gross, B.5
Sumer, S.O.6
-
56
-
-
29244464672
-
Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells
-
Chen C, Sun X, Guo P, Dong XY, Sethi P, Cheng X, et al. Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells. J Biol Chem. 2005;280:41553-61.
-
(2005)
J Biol Chem
, vol.280
, pp. 41553-41561
-
-
Chen, C.1
Sun, X.2
Guo, P.3
Dong, X.Y.4
Sethi, P.5
Cheng, X.6
-
57
-
-
34147185239
-
Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer
-
Chen C, Sun X, Guo P, Dong XY, Sethi P, Zhou W, et al. Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer. Oncogene. 2007;26:2386-94.
-
(2007)
Oncogene
, vol.26
, pp. 2386-2394
-
-
Chen, C.1
Sun, X.2
Guo, P.3
Dong, X.Y.4
Sethi, P.5
Zhou, W.6
-
58
-
-
0030936323
-
PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer
-
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943-7.
-
(1997)
Science
, vol.275
, pp. 1943-1947
-
-
Li, J.1
Yen, C.2
Liaw, D.3
Podsypanina, K.4
Bose, S.5
Wang, S.I.6
-
59
-
-
0032126505
-
Frequent inactivation of PTEN in prostate cancer cell lines and xenografts
-
Vlietstra RJ, van Alewijk DC, Hermans KG, van Steenbrugge GJ, Trapman J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 1998;58:2720-3.
-
(1998)
Cancer Res
, vol.58
, pp. 2720-2723
-
-
Vlietstra, R.J.1
Alewijk, D.C.2
Hermans, K.G.3
Steenbrugge, G.J.4
Trapman, J.5
-
60
-
-
1142274291
-
Loss of a small region around the PTEN locus is a major chromosome 10 alteration in prostate cancer xenografts and cell lines
-
Hermans KG, van Alewijk DC, Veltman JA, van Weerden W, van Kessel AG, Trapman J. Loss of a small region around the PTEN locus is a major chromosome 10 alteration in prostate cancer xenografts and cell lines. Genes Chromosomes Cancer. 2004;39:171-84.
-
(2004)
Genes Chromosomes Cancer
, vol.39
, pp. 171-184
-
-
Hermans, K.G.1
Alewijk, D.C.2
Veltman, J.A.3
Weerden, W.4
Kessel, A.G.5
Trapman, J.6
-
62
-
-
33750734651
-
Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma
-
Zheng H, Takahashi H, Murai Y, Cui Z, Nomoto K, Niwa H, et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006;26:3579-83.
-
(2006)
Anticancer Res
, vol.26
, pp. 3579-3583
-
-
Zheng, H.1
Takahashi, H.2
Murai, Y.3
Cui, Z.4
Nomoto, K.5
Niwa, H.6
-
63
-
-
33746679830
-
The expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and angiogenesis markers in hyperplastic and malignant prostate tissue
-
Lekas A, Lazaris AC, Deliveliotis C, Chrisofos M, Zoubouli C, Lapas D, et al. The expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and angiogenesis markers in hyperplastic and malignant prostate tissue. Anticancer Res. 2006;26:2989-93.
-
(2006)
Anticancer Res
, vol.26
, pp. 2989-2993
-
-
Lekas, A.1
Lazaris, A.C.2
Deliveliotis, C.3
Chrisofos, M.4
Zoubouli, C.5
Lapas, D.6
-
64
-
-
65249114297
-
Pro-proliferative factor KLF5 becomes anti-proliferative in epithelial homeostasis upon signaling-mediated modification
-
Guo P, Dong XY, Zhang X, Zhao KW, Sun X, Li Q, et al. Pro-proliferative factor KLF5 becomes anti-proliferative in epithelial homeostasis upon signaling-mediated modification. J Biol Chem. 2009;284:6071-8.
-
(2009)
J Biol Chem
, vol.284
, pp. 6071-6078
-
-
Guo, P.1
Dong, X.Y.2
Zhang, X.3
Zhao, K.W.4
Sun, X.5
Li, Q.6
-
65
-
-
84893055415
-
KLF5 activates microRNA 200 transcription to maintain epithelial characteristics and prevent induced epithelial-mesenchymal transition in epithelial cells
-
Zhang B, Zhang Z, Xia S, Xing C, Ci X, Li X, et al. KLF5 activates microRNA 200 transcription to maintain epithelial characteristics and prevent induced epithelial-mesenchymal transition in epithelial cells. Mol Cell Biol. 2013;33:4919-35.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 4919-4935
-
-
Zhang, B.1
Zhang, Z.2
Xia, S.3
Xing, C.4
Ci, X.5
Li, X.6
-
66
-
-
84893370147
-
Transforming growth factor beta inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, smad-mediated cyclin D1 downregulation
-
Martin-Garrido A, Williams HC, Lee M, Seidel-Rogol B, Ci X, Dong JT, et al. Transforming growth factor beta inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, smad-mediated cyclin D1 downregulation. PLoS One. 2013;8, e79657.
-
(2013)
PLoS One
, vol.8
-
-
Martin-Garrido, A.1
Williams, H.C.2
Lee, M.3
Seidel-Rogol, B.4
Ci, X.5
Dong, J.T.6
-
67
-
-
84860611228
-
Chromodomain helicase DNA binding protein 5 plays a tumor suppressor role in human breast cancer
-
Wu X, Zhu Z, Li W, Fu X, Su D, Fu L, et al. Chromodomain helicase DNA binding protein 5 plays a tumor suppressor role in human breast cancer. Breast Cancer Res. 2012;14:R73.
-
(2012)
Breast Cancer Res
, vol.14
, pp. R73
-
-
Wu, X.1
Zhu, Z.2
Li, W.3
Fu, X.4
Su, D.5
Fu, L.6
-
68
-
-
84859121913
-
Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells
-
Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z, et al. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer. 2011;2:782-91.
-
(2011)
Genes Cancer
, vol.2
, pp. 782-791
-
-
Zhang, Z.1
Zhang, B.2
Li, W.3
Fu, L.4
Fu, L.5
Zhu, Z.6
-
69
-
-
84884812874
-
Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1alpha and STAT-3
-
Nagaraju GP, Park W, Wen J, Mahaseth H, Landry J, Farris AB, et al. Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1alpha and STAT-3. Angiogenesis. 2013;16:903-17.
-
(2013)
Angiogenesis
, vol.16
, pp. 903-917
-
-
Nagaraju, G.P.1
Park, W.2
Wen, J.3
Mahaseth, H.4
Landry, J.5
Farris, A.B.6
-
70
-
-
84860329496
-
Cep70 contributes to angiogenesis by modulating microtubule rearrangement and stimulating cell polarization and migration
-
Shi X, Liu M, Li D, Wang J, Aneja R, Zhou J. Cep70 contributes to angiogenesis by modulating microtubule rearrangement and stimulating cell polarization and migration. Cell Cycle. 2012;11:1554-63.
-
(2012)
Cell Cycle
, vol.11
, pp. 1554-1563
-
-
Shi, X.1
Liu, M.2
Li, D.3
Wang, J.4
Aneja, R.5
Zhou, J.6
-
71
-
-
81855212681
-
Mdp3 is a novel microtubule-binding protein that regulates microtubule assembly and stability
-
Sun X, Shi X, Liu M, Li D, Zhang L, Liu X, et al. Mdp3 is a novel microtubule-binding protein that regulates microtubule assembly and stability. Cell Cycle. 2011;10:3929-37.
-
(2011)
Cell Cycle
, vol.10
, pp. 3929-3937
-
-
Sun, X.1
Shi, X.2
Liu, M.3
Li, D.4
Zhang, L.5
Liu, X.6
|