-
2
-
-
38049035375
-
Practical experiences on the necessity of external validation
-
König I., Malley J., Weimar C., Diener H.C., Ziegler A. Practical experiences on the necessity of external validation. Stat Med 2007, 26:5499-5511. 10.1002/sim.3069.
-
(2007)
Stat Med
, vol.26
, pp. 5499-5511
-
-
König, I.1
Malley, J.2
Weimar, C.3
Diener, H.C.4
Ziegler, A.5
-
3
-
-
67650082402
-
Prognosis and prognostic research: validating a prognostic model
-
Altman D., Vergouwe Y., Royston P., Moons K. Prognosis and prognostic research: validating a prognostic model. BMJ 2009, 338:b605. 10.1136/bmj.b605.
-
(2009)
BMJ
, vol.338
, pp. b605
-
-
Altman, D.1
Vergouwe, Y.2
Royston, P.3
Moons, K.4
-
4
-
-
84921950026
-
Clinical prognostic methods: trends and developments
-
Peek N., Abu-Hanna A. Clinical prognostic methods: trends and developments. J Biomed Inform 2014, 48:1-4. 10.1016/j.jbi.2014.02.016.
-
(2014)
J Biomed Inform
, vol.48
, pp. 1-4
-
-
Peek, N.1
Abu-Hanna, A.2
-
5
-
-
52949100612
-
Validation, updating and impact of clinical prediction rules: a review
-
Toll D., Janssen K., Vergouwe Y., Moons K. Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol 2008, 61:1085-1094. 10.1016/j.jclinepi.2008.04.008.
-
(2008)
J Clin Epidemiol
, vol.61
, pp. 1085-1094
-
-
Toll, D.1
Janssen, K.2
Vergouwe, Y.3
Moons, K.4
-
6
-
-
26044483543
-
Discrimination and calibration of mortality risk prediction models in interventional cardiology
-
Matheny M.E., Ohno-Machado L., Resnic F.S. Discrimination and calibration of mortality risk prediction models in interventional cardiology. J Biomed Inform 2005, 38(5):367-375
-
(2005)
J Biomed Inform
, vol.38
, Issue.5
, pp. 367-375
-
-
Matheny, M.E.1
Ohno-Machado, L.2
Resnic, F.S.3
-
7
-
-
84921383600
-
Calibration of risk prediction models impact on decision-analytic performance
-
0272989X14547233
-
Van Calster B., Vickers A.J. Calibration of risk prediction models impact on decision-analytic performance. Med Decis Making 2014, 0272989X14547233
-
(2014)
Med Decis Making
-
-
Van Calster, B.1
Vickers, A.J.2
-
8
-
-
84893821653
-
A framework for evaluating markers used to select patient treatment
-
Janes H., Pepe M.S., Huang Y. A framework for evaluating markers used to select patient treatment. Med Decis Making 2014, 34(2):159-167
-
(2014)
Med Decis Making
, vol.34
, Issue.2
, pp. 159-167
-
-
Janes, H.1
Pepe, M.S.2
Huang, Y.3
-
9
-
-
38449083411
-
Shared decision making, decision aids, and risk communication
-
Helfand M. Shared decision making, decision aids, and risk communication. Med Decis Making 2007
-
(2007)
Med Decis Making
-
-
Helfand, M.1
-
10
-
-
84856138763
-
A comparison of the performance of a model based on administrative data and a model based on clinical data: effect of severity of illness on standardized mortality ratios of intensive care unit
-
Brinkman S., Abu-Hanna A., van der Veen A., de Jonge E., de Keizer N.F. A comparison of the performance of a model based on administrative data and a model based on clinical data: effect of severity of illness on standardized mortality ratios of intensive care units Crit Care Med 2012, 40(2):373-378. 10.1097/CCM.0b013e318232d7b0.
-
(2012)
Crit Care Med
, vol.40
, Issue.2
, pp. 373-378
-
-
Brinkman, S.1
Abu-Hanna, A.2
van der Veen, A.3
de Jonge, E.4
de Keizer, N.F.5
-
11
-
-
58149151278
-
The use of genomics in clinical trial design
-
Simon R. The use of genomics in clinical trial design. Clin Cancer Res 2008, 14(19):5984-5993
-
(2008)
Clin Cancer Res
, vol.14
, Issue.19
, pp. 5984-5993
-
-
Simon, R.1
-
12
-
-
0016757157
-
Therapeutic decision making: a cost-benefit analysis
-
Pauker S.G., Kassirer J.P. Therapeutic decision making: a cost-benefit analysis. N Engl J Med 1975, 293(5):229-234
-
(1975)
N Engl J Med
, vol.293
, Issue.5
, pp. 229-234
-
-
Pauker, S.G.1
Kassirer, J.P.2
-
13
-
-
45849084978
-
A web-based tool for the assessment of discrimination and calibration properties of prognostic models
-
Taktak A.F., Eleuteri A., Lake S.P., Fisher A.C. A web-based tool for the assessment of discrimination and calibration properties of prognostic models. Comput Biol Med 2008, 38:785-791. 10.1016/j.compbiomed.2008.04.005.
-
(2008)
Comput Biol Med
, vol.38
, pp. 785-791
-
-
Taktak, A.F.1
Eleuteri, A.2
Lake, S.P.3
Fisher, A.C.4
-
14
-
-
84891834902
-
Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers
-
Austin P.C., Steyerberg E.W. Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Stat Med 2014, 33(3):517-535. 10.1002/sim.5941.
-
(2014)
Stat Med
, vol.33
, Issue.3
, pp. 517-535
-
-
Austin, P.C.1
Steyerberg, E.W.2
-
15
-
-
84901941477
-
Assessing calibration of multinomial risk prediction models
-
Van Hoorde K., Vergouwe Y., Timmerman D., Van Huffel S., Steyerberg E.W., Van Calster B. Assessing calibration of multinomial risk prediction models. Stat Med 2014, 33(15):2585-2596. 10.1002/sim.6114.
-
(2014)
Stat Med
, vol.33
, Issue.15
, pp. 2585-2596
-
-
Van Hoorde, K.1
Vergouwe, Y.2
Timmerman, D.3
Van Huffel, S.4
Steyerberg, E.W.5
Van Calster, B.6
-
16
-
-
34250891999
-
Prediction of ectopic pregnancy in women with a pregnancy of unknown location
-
Condous G., Van Calster B., Kirk E., Haider Z., Timmerman D., Van Huffel S., et al. Prediction of ectopic pregnancy in women with a pregnancy of unknown location. Ultrasound Obstet Gynecol 2007, 29(6):680-687. 10.1002/uog.4015.
-
(2007)
Ultrasound Obstet Gynecol
, vol.29
, Issue.6
, pp. 680-687
-
-
Condous, G.1
Van Calster, B.2
Kirk, E.3
Haider, Z.4
Timmerman, D.5
Van Huffel, S.6
-
17
-
-
0037083655
-
Novel artificial neural network for early detection of prostate cancer
-
Djavan B., Remzi M., Zlotta A., Seitz C., Snow P., Marberger M. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol 2002,20(4):921-929
-
(2002)
J Clin Oncol
, vol.20
, Issue.4
, pp. 921-929
-
-
Djavan, B.1
Remzi, M.2
Zlotta, A.3
Seitz, C.4
Snow, P.5
Marberger, M.6
-
18
-
-
0242608650
-
Comparison of cox regression with other methods for determining prediction models and nomograms
-
Kattan M.W. Comparison of cox regression with other methods for determining 10. prediction models and nomograms. J Urol 2003, 170(6):S6-S10. 10.1097/01.ju.0000094764.56269.2d
-
(2003)
J Urol
, vol.170
, Issue.6
, pp. S6-S10
-
-
Kattan, M.W.1
-
19
-
-
84908295582
-
Quantifying surgical complexity with machine learning: looking beyond patient factors to improve surgical models
-
Van Esbroeck A., Rubinfeld I., Hall B., Syed Z. Quantifying surgical complexity with machine learning: looking beyond patient factors to improve surgical models. Surgery 2014, 10.1016/j.surg.2014.04.034.
-
(2014)
Surgery
-
-
Van Esbroeck, A.1
Rubinfeld, I.2
Hall, B.3
Syed, Z.4
-
20
-
-
84893834249
-
Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer
-
Klement R.J., Allgäuer M., Appold S., Dieckmann K., Ernst I., Ganswindt U., et al. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2014, 88(3):732-738. 10.1016/j.ijrobp.2013.11.216.
-
(2014)
Int J Radiat Oncol Biol Phys
, vol.88
, Issue.3
, pp. 732-738
-
-
Klement, R.J.1
Allgäuer, M.2
Appold, S.3
Dieckmann, K.4
Ernst, I.5
Ganswindt, U.6
-
21
-
-
33746901239
-
The use of artificial neural networks in decision support in cancer: a systematic review
-
Lisboa P.J., Taktak A.F. The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 2006, 19(4):408-415. 10.1016/j.neunet.2005.10.007.
-
(2006)
Neural Netw
, vol.19
, Issue.4
, pp. 408-415
-
-
Lisboa, P.J.1
Taktak, A.F.2
-
22
-
-
33744961676
-
Applications of machine learning in cancer prediction and prognosis
-
Cruz J.A., Wishart D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2006, 2:59
-
(2006)
Cancer Inform
, vol.2
, pp. 59
-
-
Cruz, J.A.1
Wishart, D.S.2
-
23
-
-
33748181096
-
Machine learning for detection and diagnosis of disease
-
Sajda P. Machine learning for detection and diagnosis of disease. Ann Rev Biomed Eng 2006, 8:537-565. 10.1146/annurev.bioeng.8.061505.095802.
-
(2006)
Ann Rev Biomed Eng
, vol.8
, pp. 537-565
-
-
Sajda, P.1
-
24
-
-
84866731649
-
Risk estimation and risk prediction using machine-learning methods
-
Kruppa J., Ziegler A., König I.R. Risk estimation and risk prediction using machine-learning methods. Hum Genet 2012, 131(10):1639-1654. 10.1007/s00439-012-1194-y.
-
(2012)
Hum Genet
, vol.131
, Issue.10
, pp. 1639-1654
-
-
Kruppa, J.1
Ziegler, A.2
König, I.R.3
-
25
-
-
38349079097
-
Comparing methods for multi-class probabilities in medical decision making using LS-SVMs and kernel logistic regression
-
Marques de Sá J, Alexandre L, Duch W, Mandic D, editors
-
Van Calster B, Luts J, Suykens JA, Condous G, Bourne T, Timmerman D, et al. Comparing methods for multi-class probabilities in medical decision making using LS-SVMs and kernel logistic regression. In: Marques de Sá J, Alexandre L, Duch W, Mandic D, editors. Artificial neural networks - ICANN 2007 lecture notes in computer science, p. 139-48
-
Artificial neural networks - ICANN 2007 lecture notes in computer science
, pp. 139-148
-
-
Van Calster, B.1
Luts, J.2
Suykens, J.A.3
Condous, G.4
Bourne, T.5
Timmerman, D.6
-
26
-
-
84903648854
-
Probability estimation with machine learning methods for dichotomous and multi-category outcome: theory
-
Kruppa J., Liu Y., Biau G., Kohler M., König I.R., Malley J.D., et al. Probability estimation with machine learning methods for dichotomous and multi-category outcome: theory. Biom J 2014, 56(4):534-563. 10.1002/bimj.201300068.
-
(2014)
Biom J
, vol.56
, Issue.4
, pp. 534-563
-
-
Kruppa, J.1
Liu, Y.2
Biau, G.3
Kohler, M.4
König, I.R.5
Malley, J.D.6
-
27
-
-
84903648854
-
Probability estimation with machine learning methods for dichotomous and multicategory outcome: applications
-
Kruppa J., Liu Y., Diener H.C., Holste T., Weimar C., König I.R., et al. Probability estimation with machine learning methods for dichotomous and multicategory outcome: applications. Biom J 2014, 56(4):564-583. 10.1002/bimj.201300077.
-
(2014)
Biom J
, vol.56
, Issue.4
, pp. 564-583
-
-
Kruppa, J.1
Liu, Y.2
Diener, H.C.3
Holste, T.4
Weimar, C.5
König, I.R.6
-
29
-
-
84855764322
-
Probability machines: consistent probability estimation using nonparametric learning machines
-
Malley J., Kruppa J., Dasgupta A., Malley K., Ziegler A. Probability machines: consistent probability estimation using nonparametric learning machines. Methods Inform Med 2012, 51(1):74. 10.3414/ME00-01-0052.
-
(2012)
Methods Inform Med
, vol.51
, Issue.1
, pp. 74
-
-
Malley, J.1
Kruppa, J.2
Dasgupta, A.3
Malley, K.4
Ziegler, A.5
-
30
-
-
84863155379
-
Calibrating predictive model estimates to support personalized medicine
-
Jiang X., Osl M., Kim J., Ohno-Machado L. Calibrating predictive model estimates to support personalized medicine. J Am Med Inform Assoc 2012, 19(2):263-274. 10.1136/amiajnl-2011-000291.
-
(2012)
J Am Med Inform Assoc
, vol.19
, Issue.2
, pp. 263-274
-
-
Jiang, X.1
Osl, M.2
Kim, J.3
Ohno-Machado, L.4
-
31
-
-
36048958298
-
Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality
-
Matheny M.E., Resnic F.S., Arora N., Ohno-Machado L. Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality. J Biomed Inform 2007, 40(6):688-697. 10.1016/j.jbi.2007.05.008.
-
(2007)
J Biomed Inform
, vol.40
, Issue.6
, pp. 688-697
-
-
Matheny, M.E.1
Resnic, F.S.2
Arora, N.3
Ohno-Machado, L.4
-
32
-
-
84876442539
-
Doubly optimized calibrated support vector machine (DOC-SVM): an algorithm for joint optimization of discrimination and calibration
-
Jiang X., Menon A., Wang S., Kim J., Ohno-Machado L. Doubly optimized calibrated support vector machine (DOC-SVM): an algorithm for joint optimization of discrimination and calibration. PloS One 2012, 7(11):e48823. 10.1371/journal.pone.0048823.
-
(2012)
PloS One
, vol.7
, Issue.11
, pp. e48823
-
-
Jiang, X.1
Menon, A.2
Wang, S.3
Kim, J.4
Ohno-Machado, L.5
-
34
-
-
0001460390
-
Vector generalized additive models
-
Yee T., Wild C. Vector generalized additive models. J Roy Stat Soc Ser B (Methodol) 1996, 58(3):481-493
-
(1996)
J Roy Stat Soc Ser B (Methodol)
, vol.58
, Issue.3
, pp. 481-493
-
-
Yee, T.1
Wild, C.2
-
35
-
-
3242750489
-
Vector splines and other vector smoothers
-
Springer, J.G. Betlehem, P.G.M. van der Heijden (Eds.)
-
Yee T.W. Vector splines and other vector smoothers. COMPSTAT: proceedings in computational statistics 2000, 529-534. Springer. J.G. Betlehem, P.G.M. van der Heijden (Eds.)
-
(2000)
COMPSTAT: proceedings in computational statistics
, pp. 529-534
-
-
Yee, T.W.1
-
36
-
-
73849094087
-
Assessing the performance of prediction models: a framework for traditional and novel measures
-
Steyerberg E.W., Vickers A.J., Cook N.R., Gerds T., Gonen M., Obuchowski N., et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010, 21(1):128-138. 10.1097/EDE.0b013e3181c30fb2.
-
(2010)
Epidemiology
, vol.21
, Issue.1
, pp. 128-138
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
Gerds, T.4
Gonen, M.5
Obuchowski, N.6
-
37
-
-
33644836410
-
Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the international ovarian tumor analysis group
-
Timmerman D., Testa A., Bourne T., Ferrazzi E., Ameye L., Konstantinovic M., et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the international ovarian tumor analysis group. J Clin Oncol 2005, 23:8794-8801. 10.1200/JCO.2005.01.7632.
-
(2005)
J Clin Oncol
, vol.23
, pp. 8794-8801
-
-
Timmerman, D.1
Testa, A.2
Bourne, T.3
Ferrazzi, E.4
Ameye, L.5
Konstantinovic, M.6
-
38
-
-
77956138548
-
Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the iota group
-
Timmerman D., Van Calster B., Testa A., Guerriero S., Fischerova D., Lissoni A., et al. Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the iota group. Ultrasound Obstet Gynecol 2010, 36:226-234. 10.1002/uog.7636.
-
(2010)
Ultrasound Obstet Gynecol
, vol.36
, pp. 226-234
-
-
Timmerman, D.1
Van Calster, B.2
Testa, A.3
Guerriero, S.4
Fischerova, D.5
Lissoni, A.6
-
39
-
-
59449107079
-
Prospective interval validation of mathematical models to predict malignancy in adnexal masses: results from the international ovarian tumor analysis study
-
Van Holsbeke C., Van Calster B., Testa A., Domali E., Lu C., Van Huffel S., et al. Prospective interval validation of mathematical models to predict malignancy in adnexal masses: results from the international ovarian tumor analysis study. Clin Cancer Res 2009, 15:648-691. 10.1158/1078-0432.CCR-08-0113.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 648-691
-
-
Van Holsbeke, C.1
Van Calster, B.2
Testa, A.3
Domali, E.4
Lu, C.5
Van Huffel, S.6
-
40
-
-
84908043035
-
Evaluating the risk of ovarian cancer prior to surgery using the ADNEX risk model: diagnostic study to differentiate between benign, borderline, stage i invasive, advanced stage invasive, and secondary metastatic tumours
-
Van Calster B., Van Hoorde K., Valentin L., Testa A.C., Fischerova D., Van Holsbeke C., et al. Evaluating the risk of ovarian cancer prior to surgery using the ADNEX risk model: diagnostic study to differentiate between benign, borderline, stage i invasive, advanced stage invasive, and secondary metastatic tumours. BMJ 2014, 349:g5920. 10.1136/bmj.g5920.
-
(2014)
BMJ
, vol.349
, pp. g5920
-
-
Van Calster, B.1
Van Hoorde, K.2
Valentin, L.3
Testa, A.C.4
Fischerova, D.5
Van Holsbeke, C.6
-
41
-
-
0030207783
-
Partially parametric techniques for multiple imputation
-
Schenker N., Taylor J. Partially parametric techniques for multiple imputation. Comput Stat Data Anal 1996, 22:425-446. 10.1016/0167-9473(95)00057-7.
-
(1996)
Comput Stat Data Anal
, vol.22
, pp. 425-446
-
-
Schenker, N.1
Taylor, J.2
-
42
-
-
68249114452
-
Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
-
Sterne J., White I., Carlin J., Spratt M., Royston P., Kenward M., et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009, 338:b2393. 10.1136/bmj.b2393.
-
(2009)
BMJ
, vol.338
, pp. b2393
-
-
Sterne, J.1
White, I.2
Carlin, J.3
Spratt, M.4
Royston, P.5
Kenward, M.6
-
43
-
-
26044460461
-
The use of receiver operating characteristic curves in biomedical informatics
-
Lasko T.A., Bhagwat J.G., Zou K.H., Ohno-Machado L. The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform 2005, 38(5):404-415
-
(2005)
J Biomed Inform
, vol.38
, Issue.5
, pp. 404-415
-
-
Lasko, T.A.1
Bhagwat, J.G.2
Zou, K.H.3
Ohno-Machado, L.4
-
44
-
-
84871310672
-
Assessing the discriminative ability of risk models for more than two outcome categories: a perspective
-
Van Calster B., Vergouwe Y., Van Belle V., Looman C., Timmerman D., Steyerberg E. Assessing the discriminative ability of risk models for more than two outcome -categories: a perspective. Eur J Epidemiol 2012, 27(10):761-770.10.1007/s10654-0129733-3
-
(2012)
Eur J Epidemiol
, vol.27
, Issue.10
, pp. 761-770
-
-
Van Calster, B.1
Vergouwe, Y.2
Van Belle, V.3
Looman, C.4
Timmerman, D.5
Steyerberg, E.6
-
45
-
-
0003562954
-
A simple generalization of the area under the ROC curve for multiple class classification problems
-
Hand D.J., Till R.J. A simple generalization of the area under the ROC curve for multiple class classification problems. Mach Learn 2001, 45:171-186. 10.1023/A:1010920819831.
-
(2001)
Mach Learn
, vol.45
, pp. 171-186
-
-
Hand, D.J.1
Till, R.J.2
-
46
-
-
84866464239
-
Extending the c statistic to nominal polytomous outcomes: the polytomous discrimination index
-
Van Calster B., Van Belle V., Vergouwe Y., Timmerman D., Van Huffel S., Steyerberg E.W. Extending the c statistic to nominal polytomous outcomes: the polytomous discrimination index. Stat Med 2012, 31:2610-2626. 10.1002/sim.5321.
-
(2012)
Stat Med
, vol.31
, pp. 2610-2626
-
-
Van Calster, B.1
Van Belle, V.2
Vergouwe, Y.3
Timmerman, D.4
Van Huffel, S.5
Steyerberg, E.W.6
-
47
-
-
0003408420
-
-
MIT Press
-
Schölkopf B., Smola A.J. Learning with kernels: support vector machines, regularization, optimization, and beyond 2002, MIT Press
-
(2002)
Learning with kernels: support vector machines, regularization, optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
48
-
-
85152844454
-
KNN: k-nearest neighbors
-
Chapman & Hall/CRC, X. Wu, V. Kumar (Eds.)
-
Steinbach M., Tan P.N. kNN: k-nearest neighbors. The top ten algorithms in data mining 2009, 151-162. Chapman & Hall/CRC. X. Wu, V. Kumar (Eds.)
-
(2009)
The top ten algorithms in data mining
, pp. 151-162
-
-
Steinbach, M.1
Tan, P.N.2
-
49
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001, 45(1):5-32. 10.1023/A:1010933404324.
-
(2001)
Mach Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
50
-
-
85152852016
-
Naïve Bayes
-
Chapman & Hall/CRC, X. Wu, V. Kumar (Eds.)
-
Hand D.J. Naïve Bayes. The top ten algorithms in data mining 2009, 163-178. Chapman & Hall/CRC. X. Wu, V. Kumar (Eds.)
-
(2009)
The top ten algorithms in data mining
, pp. 163-178
-
-
Hand, D.J.1
-
51
-
-
2342533421
-
Class prediction by nearest shrunken centroids, with applications to DNA microarrays
-
Tibshirani R., Hastie T., Narasimhan B., Chu G. Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Stat Sci 2003, 18(1):104-117
-
(2003)
Stat Sci
, vol.18
, Issue.1
, pp. 104-117
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
53
-
-
0032355984
-
Classification by pairwise coupling
-
Hastie T., Tibshirani R. Classification by pairwise coupling. Ann Stat 1998, 26(2):451-471. 10.1214/aos/1028144844.
-
(1998)
Ann Stat
, vol.26
, Issue.2
, pp. 451-471
-
-
Hastie, T.1
Tibshirani, R.2
-
54
-
-
51349159085
-
Probability estimates for multi-class classification by pairwise coupling
-
Wu T., Lin C., Weng R. Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 2004, 5:975-1005
-
(2004)
J Mach Learn Res
, vol.5
, pp. 975-1005
-
-
Wu, T.1
Lin, C.2
Weng, R.3
-
57
-
-
0031006441
-
A comparison of goodness-of-fit tests for the logistic regression models
-
Hosmer D., Hosmer T., Le Cessie S., Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression models. Stat Med 1997, 16:965-980. 10.1002/(SICI)1097-0258(19970515)
-
(1997)
Stat Med
, vol.16
, pp. 965-980
-
-
Hosmer, D.1
Hosmer, T.2
Le Cessie, S.3
Lemeshow, S.4
-
58
-
-
84903607237
-
Risk prediction with machine learning and regression methods
-
Steyerberg E.W., van der Ploeg T., Van Calster B. Risk prediction with machine learning and regression methods. Biom J 2014, 56(4):601-606. 10.1002/bimj.201300297.
-
(2014)
Biom J
, vol.56
, Issue.4
, pp. 601-606
-
-
Steyerberg, E.W.1
van der Ploeg, T.2
Van Calster, B.3
-
59
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
Golub G.H.G., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21(2):215-223. 10.1080/00401706.1979.10489751.
-
(1979)
Technometrics
, vol.21
, Issue.2
, pp. 215-223
-
-
Golub, G.H.G.1
Heath, M.2
Wahba, G.3
|