메뉴 건너뛰기




Volumn 54, Issue , 2015, Pages 283-293

A spline-based tool to assess and visualize the calibration of multiclass risk predictions

Author keywords

Calibration; Logistic regression; Machine learning; Multiclass; Probability estimation; Risk models

Indexed keywords

CALIBRATION; CLASSIFIERS; DECISION TREES; DISEASES; LEARNING SYSTEMS; LOGISTIC REGRESSION; MEDICAL APPLICATIONS; NEAREST NEIGHBOR SEARCH; RANDOM FORESTS; RISK PERCEPTION; SPLINES; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION; TUMORS;

EID: 84927977915     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2014.12.016     Document Type: Article
Times cited : (65)

References (59)
  • 2
    • 38049035375 scopus 로고    scopus 로고
    • Practical experiences on the necessity of external validation
    • König I., Malley J., Weimar C., Diener H.C., Ziegler A. Practical experiences on the necessity of external validation. Stat Med 2007, 26:5499-5511. 10.1002/sim.3069.
    • (2007) Stat Med , vol.26 , pp. 5499-5511
    • König, I.1    Malley, J.2    Weimar, C.3    Diener, H.C.4    Ziegler, A.5
  • 3
    • 67650082402 scopus 로고    scopus 로고
    • Prognosis and prognostic research: validating a prognostic model
    • Altman D., Vergouwe Y., Royston P., Moons K. Prognosis and prognostic research: validating a prognostic model. BMJ 2009, 338:b605. 10.1136/bmj.b605.
    • (2009) BMJ , vol.338 , pp. b605
    • Altman, D.1    Vergouwe, Y.2    Royston, P.3    Moons, K.4
  • 4
    • 84921950026 scopus 로고    scopus 로고
    • Clinical prognostic methods: trends and developments
    • Peek N., Abu-Hanna A. Clinical prognostic methods: trends and developments. J Biomed Inform 2014, 48:1-4. 10.1016/j.jbi.2014.02.016.
    • (2014) J Biomed Inform , vol.48 , pp. 1-4
    • Peek, N.1    Abu-Hanna, A.2
  • 5
    • 52949100612 scopus 로고    scopus 로고
    • Validation, updating and impact of clinical prediction rules: a review
    • Toll D., Janssen K., Vergouwe Y., Moons K. Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol 2008, 61:1085-1094. 10.1016/j.jclinepi.2008.04.008.
    • (2008) J Clin Epidemiol , vol.61 , pp. 1085-1094
    • Toll, D.1    Janssen, K.2    Vergouwe, Y.3    Moons, K.4
  • 6
    • 26044483543 scopus 로고    scopus 로고
    • Discrimination and calibration of mortality risk prediction models in interventional cardiology
    • Matheny M.E., Ohno-Machado L., Resnic F.S. Discrimination and calibration of mortality risk prediction models in interventional cardiology. J Biomed Inform 2005, 38(5):367-375
    • (2005) J Biomed Inform , vol.38 , Issue.5 , pp. 367-375
    • Matheny, M.E.1    Ohno-Machado, L.2    Resnic, F.S.3
  • 7
    • 84921383600 scopus 로고    scopus 로고
    • Calibration of risk prediction models impact on decision-analytic performance
    • 0272989X14547233
    • Van Calster B., Vickers A.J. Calibration of risk prediction models impact on decision-analytic performance. Med Decis Making 2014, 0272989X14547233
    • (2014) Med Decis Making
    • Van Calster, B.1    Vickers, A.J.2
  • 8
    • 84893821653 scopus 로고    scopus 로고
    • A framework for evaluating markers used to select patient treatment
    • Janes H., Pepe M.S., Huang Y. A framework for evaluating markers used to select patient treatment. Med Decis Making 2014, 34(2):159-167
    • (2014) Med Decis Making , vol.34 , Issue.2 , pp. 159-167
    • Janes, H.1    Pepe, M.S.2    Huang, Y.3
  • 9
    • 38449083411 scopus 로고    scopus 로고
    • Shared decision making, decision aids, and risk communication
    • Helfand M. Shared decision making, decision aids, and risk communication. Med Decis Making 2007
    • (2007) Med Decis Making
    • Helfand, M.1
  • 10
    • 84856138763 scopus 로고    scopus 로고
    • A comparison of the performance of a model based on administrative data and a model based on clinical data: effect of severity of illness on standardized mortality ratios of intensive care unit
    • Brinkman S., Abu-Hanna A., van der Veen A., de Jonge E., de Keizer N.F. A comparison of the performance of a model based on administrative data and a model based on clinical data: effect of severity of illness on standardized mortality ratios of intensive care units Crit Care Med 2012, 40(2):373-378. 10.1097/CCM.0b013e318232d7b0.
    • (2012) Crit Care Med , vol.40 , Issue.2 , pp. 373-378
    • Brinkman, S.1    Abu-Hanna, A.2    van der Veen, A.3    de Jonge, E.4    de Keizer, N.F.5
  • 11
    • 58149151278 scopus 로고    scopus 로고
    • The use of genomics in clinical trial design
    • Simon R. The use of genomics in clinical trial design. Clin Cancer Res 2008, 14(19):5984-5993
    • (2008) Clin Cancer Res , vol.14 , Issue.19 , pp. 5984-5993
    • Simon, R.1
  • 12
    • 0016757157 scopus 로고
    • Therapeutic decision making: a cost-benefit analysis
    • Pauker S.G., Kassirer J.P. Therapeutic decision making: a cost-benefit analysis. N Engl J Med 1975, 293(5):229-234
    • (1975) N Engl J Med , vol.293 , Issue.5 , pp. 229-234
    • Pauker, S.G.1    Kassirer, J.P.2
  • 13
    • 45849084978 scopus 로고    scopus 로고
    • A web-based tool for the assessment of discrimination and calibration properties of prognostic models
    • Taktak A.F., Eleuteri A., Lake S.P., Fisher A.C. A web-based tool for the assessment of discrimination and calibration properties of prognostic models. Comput Biol Med 2008, 38:785-791. 10.1016/j.compbiomed.2008.04.005.
    • (2008) Comput Biol Med , vol.38 , pp. 785-791
    • Taktak, A.F.1    Eleuteri, A.2    Lake, S.P.3    Fisher, A.C.4
  • 14
    • 84891834902 scopus 로고    scopus 로고
    • Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers
    • Austin P.C., Steyerberg E.W. Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Stat Med 2014, 33(3):517-535. 10.1002/sim.5941.
    • (2014) Stat Med , vol.33 , Issue.3 , pp. 517-535
    • Austin, P.C.1    Steyerberg, E.W.2
  • 17
    • 0037083655 scopus 로고    scopus 로고
    • Novel artificial neural network for early detection of prostate cancer
    • Djavan B., Remzi M., Zlotta A., Seitz C., Snow P., Marberger M. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol 2002,20(4):921-929
    • (2002) J Clin Oncol , vol.20 , Issue.4 , pp. 921-929
    • Djavan, B.1    Remzi, M.2    Zlotta, A.3    Seitz, C.4    Snow, P.5    Marberger, M.6
  • 18
    • 0242608650 scopus 로고    scopus 로고
    • Comparison of cox regression with other methods for determining prediction models and nomograms
    • Kattan M.W. Comparison of cox regression with other methods for determining 10. prediction models and nomograms. J Urol 2003, 170(6):S6-S10. 10.1097/01.ju.0000094764.56269.2d
    • (2003) J Urol , vol.170 , Issue.6 , pp. S6-S10
    • Kattan, M.W.1
  • 19
    • 84908295582 scopus 로고    scopus 로고
    • Quantifying surgical complexity with machine learning: looking beyond patient factors to improve surgical models
    • Van Esbroeck A., Rubinfeld I., Hall B., Syed Z. Quantifying surgical complexity with machine learning: looking beyond patient factors to improve surgical models. Surgery 2014, 10.1016/j.surg.2014.04.034.
    • (2014) Surgery
    • Van Esbroeck, A.1    Rubinfeld, I.2    Hall, B.3    Syed, Z.4
  • 20
    • 84893834249 scopus 로고    scopus 로고
    • Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer
    • Klement R.J., Allgäuer M., Appold S., Dieckmann K., Ernst I., Ganswindt U., et al. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2014, 88(3):732-738. 10.1016/j.ijrobp.2013.11.216.
    • (2014) Int J Radiat Oncol Biol Phys , vol.88 , Issue.3 , pp. 732-738
    • Klement, R.J.1    Allgäuer, M.2    Appold, S.3    Dieckmann, K.4    Ernst, I.5    Ganswindt, U.6
  • 21
    • 33746901239 scopus 로고    scopus 로고
    • The use of artificial neural networks in decision support in cancer: a systematic review
    • Lisboa P.J., Taktak A.F. The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 2006, 19(4):408-415. 10.1016/j.neunet.2005.10.007.
    • (2006) Neural Netw , vol.19 , Issue.4 , pp. 408-415
    • Lisboa, P.J.1    Taktak, A.F.2
  • 22
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz J.A., Wishart D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2006, 2:59
    • (2006) Cancer Inform , vol.2 , pp. 59
    • Cruz, J.A.1    Wishart, D.S.2
  • 23
    • 33748181096 scopus 로고    scopus 로고
    • Machine learning for detection and diagnosis of disease
    • Sajda P. Machine learning for detection and diagnosis of disease. Ann Rev Biomed Eng 2006, 8:537-565. 10.1146/annurev.bioeng.8.061505.095802.
    • (2006) Ann Rev Biomed Eng , vol.8 , pp. 537-565
    • Sajda, P.1
  • 24
    • 84866731649 scopus 로고    scopus 로고
    • Risk estimation and risk prediction using machine-learning methods
    • Kruppa J., Ziegler A., König I.R. Risk estimation and risk prediction using machine-learning methods. Hum Genet 2012, 131(10):1639-1654. 10.1007/s00439-012-1194-y.
    • (2012) Hum Genet , vol.131 , Issue.10 , pp. 1639-1654
    • Kruppa, J.1    Ziegler, A.2    König, I.R.3
  • 26
    • 84903648854 scopus 로고    scopus 로고
    • Probability estimation with machine learning methods for dichotomous and multi-category outcome: theory
    • Kruppa J., Liu Y., Biau G., Kohler M., König I.R., Malley J.D., et al. Probability estimation with machine learning methods for dichotomous and multi-category outcome: theory. Biom J 2014, 56(4):534-563. 10.1002/bimj.201300068.
    • (2014) Biom J , vol.56 , Issue.4 , pp. 534-563
    • Kruppa, J.1    Liu, Y.2    Biau, G.3    Kohler, M.4    König, I.R.5    Malley, J.D.6
  • 27
    • 84903648854 scopus 로고    scopus 로고
    • Probability estimation with machine learning methods for dichotomous and multicategory outcome: applications
    • Kruppa J., Liu Y., Diener H.C., Holste T., Weimar C., König I.R., et al. Probability estimation with machine learning methods for dichotomous and multicategory outcome: applications. Biom J 2014, 56(4):564-583. 10.1002/bimj.201300077.
    • (2014) Biom J , vol.56 , Issue.4 , pp. 564-583
    • Kruppa, J.1    Liu, Y.2    Diener, H.C.3    Holste, T.4    Weimar, C.5    König, I.R.6
  • 29
    • 84855764322 scopus 로고    scopus 로고
    • Probability machines: consistent probability estimation using nonparametric learning machines
    • Malley J., Kruppa J., Dasgupta A., Malley K., Ziegler A. Probability machines: consistent probability estimation using nonparametric learning machines. Methods Inform Med 2012, 51(1):74. 10.3414/ME00-01-0052.
    • (2012) Methods Inform Med , vol.51 , Issue.1 , pp. 74
    • Malley, J.1    Kruppa, J.2    Dasgupta, A.3    Malley, K.4    Ziegler, A.5
  • 30
    • 84863155379 scopus 로고    scopus 로고
    • Calibrating predictive model estimates to support personalized medicine
    • Jiang X., Osl M., Kim J., Ohno-Machado L. Calibrating predictive model estimates to support personalized medicine. J Am Med Inform Assoc 2012, 19(2):263-274. 10.1136/amiajnl-2011-000291.
    • (2012) J Am Med Inform Assoc , vol.19 , Issue.2 , pp. 263-274
    • Jiang, X.1    Osl, M.2    Kim, J.3    Ohno-Machado, L.4
  • 31
    • 36048958298 scopus 로고    scopus 로고
    • Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality
    • Matheny M.E., Resnic F.S., Arora N., Ohno-Machado L. Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality. J Biomed Inform 2007, 40(6):688-697. 10.1016/j.jbi.2007.05.008.
    • (2007) J Biomed Inform , vol.40 , Issue.6 , pp. 688-697
    • Matheny, M.E.1    Resnic, F.S.2    Arora, N.3    Ohno-Machado, L.4
  • 32
    • 84876442539 scopus 로고    scopus 로고
    • Doubly optimized calibrated support vector machine (DOC-SVM): an algorithm for joint optimization of discrimination and calibration
    • Jiang X., Menon A., Wang S., Kim J., Ohno-Machado L. Doubly optimized calibrated support vector machine (DOC-SVM): an algorithm for joint optimization of discrimination and calibration. PloS One 2012, 7(11):e48823. 10.1371/journal.pone.0048823.
    • (2012) PloS One , vol.7 , Issue.11 , pp. e48823
    • Jiang, X.1    Menon, A.2    Wang, S.3    Kim, J.4    Ohno-Machado, L.5
  • 34
    • 0001460390 scopus 로고    scopus 로고
    • Vector generalized additive models
    • Yee T., Wild C. Vector generalized additive models. J Roy Stat Soc Ser B (Methodol) 1996, 58(3):481-493
    • (1996) J Roy Stat Soc Ser B (Methodol) , vol.58 , Issue.3 , pp. 481-493
    • Yee, T.1    Wild, C.2
  • 35
    • 3242750489 scopus 로고    scopus 로고
    • Vector splines and other vector smoothers
    • Springer, J.G. Betlehem, P.G.M. van der Heijden (Eds.)
    • Yee T.W. Vector splines and other vector smoothers. COMPSTAT: proceedings in computational statistics 2000, 529-534. Springer. J.G. Betlehem, P.G.M. van der Heijden (Eds.)
    • (2000) COMPSTAT: proceedings in computational statistics , pp. 529-534
    • Yee, T.W.1
  • 36
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: a framework for traditional and novel measures
    • Steyerberg E.W., Vickers A.J., Cook N.R., Gerds T., Gonen M., Obuchowski N., et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010, 21(1):128-138. 10.1097/EDE.0b013e3181c30fb2.
    • (2010) Epidemiology , vol.21 , Issue.1 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3    Gerds, T.4    Gonen, M.5    Obuchowski, N.6
  • 37
    • 33644836410 scopus 로고    scopus 로고
    • Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the international ovarian tumor analysis group
    • Timmerman D., Testa A., Bourne T., Ferrazzi E., Ameye L., Konstantinovic M., et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the international ovarian tumor analysis group. J Clin Oncol 2005, 23:8794-8801. 10.1200/JCO.2005.01.7632.
    • (2005) J Clin Oncol , vol.23 , pp. 8794-8801
    • Timmerman, D.1    Testa, A.2    Bourne, T.3    Ferrazzi, E.4    Ameye, L.5    Konstantinovic, M.6
  • 38
    • 77956138548 scopus 로고    scopus 로고
    • Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the iota group
    • Timmerman D., Van Calster B., Testa A., Guerriero S., Fischerova D., Lissoni A., et al. Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the iota group. Ultrasound Obstet Gynecol 2010, 36:226-234. 10.1002/uog.7636.
    • (2010) Ultrasound Obstet Gynecol , vol.36 , pp. 226-234
    • Timmerman, D.1    Van Calster, B.2    Testa, A.3    Guerriero, S.4    Fischerova, D.5    Lissoni, A.6
  • 39
    • 59449107079 scopus 로고    scopus 로고
    • Prospective interval validation of mathematical models to predict malignancy in adnexal masses: results from the international ovarian tumor analysis study
    • Van Holsbeke C., Van Calster B., Testa A., Domali E., Lu C., Van Huffel S., et al. Prospective interval validation of mathematical models to predict malignancy in adnexal masses: results from the international ovarian tumor analysis study. Clin Cancer Res 2009, 15:648-691. 10.1158/1078-0432.CCR-08-0113.
    • (2009) Clin Cancer Res , vol.15 , pp. 648-691
    • Van Holsbeke, C.1    Van Calster, B.2    Testa, A.3    Domali, E.4    Lu, C.5    Van Huffel, S.6
  • 40
    • 84908043035 scopus 로고    scopus 로고
    • Evaluating the risk of ovarian cancer prior to surgery using the ADNEX risk model: diagnostic study to differentiate between benign, borderline, stage i invasive, advanced stage invasive, and secondary metastatic tumours
    • Van Calster B., Van Hoorde K., Valentin L., Testa A.C., Fischerova D., Van Holsbeke C., et al. Evaluating the risk of ovarian cancer prior to surgery using the ADNEX risk model: diagnostic study to differentiate between benign, borderline, stage i invasive, advanced stage invasive, and secondary metastatic tumours. BMJ 2014, 349:g5920. 10.1136/bmj.g5920.
    • (2014) BMJ , vol.349 , pp. g5920
    • Van Calster, B.1    Van Hoorde, K.2    Valentin, L.3    Testa, A.C.4    Fischerova, D.5    Van Holsbeke, C.6
  • 41
    • 0030207783 scopus 로고    scopus 로고
    • Partially parametric techniques for multiple imputation
    • Schenker N., Taylor J. Partially parametric techniques for multiple imputation. Comput Stat Data Anal 1996, 22:425-446. 10.1016/0167-9473(95)00057-7.
    • (1996) Comput Stat Data Anal , vol.22 , pp. 425-446
    • Schenker, N.1    Taylor, J.2
  • 42
    • 68249114452 scopus 로고    scopus 로고
    • Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
    • Sterne J., White I., Carlin J., Spratt M., Royston P., Kenward M., et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009, 338:b2393. 10.1136/bmj.b2393.
    • (2009) BMJ , vol.338 , pp. b2393
    • Sterne, J.1    White, I.2    Carlin, J.3    Spratt, M.4    Royston, P.5    Kenward, M.6
  • 43
    • 26044460461 scopus 로고    scopus 로고
    • The use of receiver operating characteristic curves in biomedical informatics
    • Lasko T.A., Bhagwat J.G., Zou K.H., Ohno-Machado L. The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform 2005, 38(5):404-415
    • (2005) J Biomed Inform , vol.38 , Issue.5 , pp. 404-415
    • Lasko, T.A.1    Bhagwat, J.G.2    Zou, K.H.3    Ohno-Machado, L.4
  • 44
    • 84871310672 scopus 로고    scopus 로고
    • Assessing the discriminative ability of risk models for more than two outcome categories: a perspective
    • Van Calster B., Vergouwe Y., Van Belle V., Looman C., Timmerman D., Steyerberg E. Assessing the discriminative ability of risk models for more than two outcome -categories: a perspective. Eur J Epidemiol 2012, 27(10):761-770.10.1007/s10654-0129733-3
    • (2012) Eur J Epidemiol , vol.27 , Issue.10 , pp. 761-770
    • Van Calster, B.1    Vergouwe, Y.2    Van Belle, V.3    Looman, C.4    Timmerman, D.5    Steyerberg, E.6
  • 45
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve for multiple class classification problems
    • Hand D.J., Till R.J. A simple generalization of the area under the ROC curve for multiple class classification problems. Mach Learn 2001, 45:171-186. 10.1023/A:1010920819831.
    • (2001) Mach Learn , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 46
    • 84866464239 scopus 로고    scopus 로고
    • Extending the c statistic to nominal polytomous outcomes: the polytomous discrimination index
    • Van Calster B., Van Belle V., Vergouwe Y., Timmerman D., Van Huffel S., Steyerberg E.W. Extending the c statistic to nominal polytomous outcomes: the polytomous discrimination index. Stat Med 2012, 31:2610-2626. 10.1002/sim.5321.
    • (2012) Stat Med , vol.31 , pp. 2610-2626
    • Van Calster, B.1    Van Belle, V.2    Vergouwe, Y.3    Timmerman, D.4    Van Huffel, S.5    Steyerberg, E.W.6
  • 48
    • 85152844454 scopus 로고    scopus 로고
    • KNN: k-nearest neighbors
    • Chapman & Hall/CRC, X. Wu, V. Kumar (Eds.)
    • Steinbach M., Tan P.N. kNN: k-nearest neighbors. The top ten algorithms in data mining 2009, 151-162. Chapman & Hall/CRC. X. Wu, V. Kumar (Eds.)
    • (2009) The top ten algorithms in data mining , pp. 151-162
    • Steinbach, M.1    Tan, P.N.2
  • 49
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45(1):5-32. 10.1023/A:1010933404324.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 50
    • 85152852016 scopus 로고    scopus 로고
    • Naïve Bayes
    • Chapman & Hall/CRC, X. Wu, V. Kumar (Eds.)
    • Hand D.J. Naïve Bayes. The top ten algorithms in data mining 2009, 163-178. Chapman & Hall/CRC. X. Wu, V. Kumar (Eds.)
    • (2009) The top ten algorithms in data mining , pp. 163-178
    • Hand, D.J.1
  • 51
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids, with applications to DNA microarrays
    • Tibshirani R., Hastie T., Narasimhan B., Chu G. Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Stat Sci 2003, 18(1):104-117
    • (2003) Stat Sci , vol.18 , Issue.1 , pp. 104-117
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 53
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Hastie T., Tibshirani R. Classification by pairwise coupling. Ann Stat 1998, 26(2):451-471. 10.1214/aos/1028144844.
    • (1998) Ann Stat , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 54
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu T., Lin C., Weng R. Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 2004, 5:975-1005
    • (2004) J Mach Learn Res , vol.5 , pp. 975-1005
    • Wu, T.1    Lin, C.2    Weng, R.3
  • 57
    • 0031006441 scopus 로고    scopus 로고
    • A comparison of goodness-of-fit tests for the logistic regression models
    • Hosmer D., Hosmer T., Le Cessie S., Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression models. Stat Med 1997, 16:965-980. 10.1002/(SICI)1097-0258(19970515)
    • (1997) Stat Med , vol.16 , pp. 965-980
    • Hosmer, D.1    Hosmer, T.2    Le Cessie, S.3    Lemeshow, S.4
  • 58
    • 84903607237 scopus 로고    scopus 로고
    • Risk prediction with machine learning and regression methods
    • Steyerberg E.W., van der Ploeg T., Van Calster B. Risk prediction with machine learning and regression methods. Biom J 2014, 56(4):601-606. 10.1002/bimj.201300297.
    • (2014) Biom J , vol.56 , Issue.4 , pp. 601-606
    • Steyerberg, E.W.1    van der Ploeg, T.2    Van Calster, B.3
  • 59
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub G.H.G., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21(2):215-223. 10.1080/00401706.1979.10489751.
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 215-223
    • Golub, G.H.G.1    Heath, M.2    Wahba, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.