메뉴 건너뛰기




Volumn 40, Issue 6, 2007, Pages 688-697

Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality

Author keywords

Evolutionary computing; Genetic algorithms; Logistic regression; Machine learning; Percutaneous coronary intervention; Support vector machines

Indexed keywords

BIOMEDICAL ENGINEERING; GENETIC ALGORITHMS; MEDICAL APPLICATIONS; OPTIMIZATION; SENSITIVITY ANALYSIS;

EID: 36048958298     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2007.05.008     Document Type: Article
Times cited : (34)

References (49)
  • 1
    • 0031918615 scopus 로고    scopus 로고
    • Understanding articles comparing outcomes among intensive care units to rate quality of care. Evidence based medicine in critical care group
    • Randolph A.G., Guyatt G.H., and Carlet J. Understanding articles comparing outcomes among intensive care units to rate quality of care. Evidence based medicine in critical care group. Crit Care Med 26 (1998) 773-781
    • (1998) Crit Care Med , vol.26 , pp. 773-781
    • Randolph, A.G.1    Guyatt, G.H.2    Carlet, J.3
  • 3
    • 0031178260 scopus 로고    scopus 로고
    • Predicting survival in the intensive care unit
    • Hunt J.P., and Meyer A.A. Predicting survival in the intensive care unit. Curr Prob Surg 34 (1997) 527-599
    • (1997) Curr Prob Surg , vol.34 , pp. 527-599
    • Hunt, J.P.1    Meyer, A.A.2
  • 4
    • 0021297733 scopus 로고
    • The value of measuring severity of disease in clinical research on acutely ill patients
    • Knaus W.A., Wagner D.P., and Draper E.A. The value of measuring severity of disease in clinical research on acutely ill patients. J Chronic Dis 37 (1984) 455-463
    • (1984) J Chronic Dis , vol.37 , pp. 455-463
    • Knaus, W.A.1    Wagner, D.P.2    Draper, E.A.3
  • 5
    • 13244258275 scopus 로고    scopus 로고
    • Predicting patient outcomes, futility, and resource utilization in the intensive care unit: the role of severity scoring systems and general outcome prediction models
    • Mendez-Tellez P.A., and Dorman T. Predicting patient outcomes, futility, and resource utilization in the intensive care unit: the role of severity scoring systems and general outcome prediction models. Mayo Clin Proc 80 (2005) 161-163
    • (2005) Mayo Clin Proc , vol.80 , pp. 161-163
    • Mendez-Tellez, P.A.1    Dorman, T.2
  • 6
    • 33744821668 scopus 로고    scopus 로고
    • Risk scoring in perioperative and surgical intensive care patients: a review
    • Hariharan S., and Zbar A. Risk scoring in perioperative and surgical intensive care patients: a review. Curr Surg 63 (2006) 226-236
    • (2006) Curr Surg , vol.63 , pp. 226-236
    • Hariharan, S.1    Zbar, A.2
  • 10
    • 36049049832 scopus 로고    scopus 로고
    • Gwiggner C, Lanckriet G. Characteristics in flight data-estimation with logistic regression and support vector machines. In: International conference on research in air transportation, Zilina, Slovakia, 2004.
  • 11
    • 33748349842 scopus 로고    scopus 로고
    • Support vector machine learning model for the prediction of sentinel node status in patients with cutaneous melanoma
    • Mocellin S., Ambrosi A., Montesco M.C., Foletto M., Zavagno G., Nitti D., et al. Support vector machine learning model for the prediction of sentinel node status in patients with cutaneous melanoma. Ann Surg Oncol 13 (2006) 1113-1122
    • (2006) Ann Surg Oncol , vol.13 , pp. 1113-1122
    • Mocellin, S.1    Ambrosi, A.2    Montesco, M.C.3    Foletto, M.4    Zavagno, G.5    Nitti, D.6
  • 13
    • 33744535368 scopus 로고    scopus 로고
    • Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
    • Epub 2006 May, 2023
    • Mavroforakis M.E., Georgiou H.V., Dimitropoulos N., Cavouras D., and Theodoridis S. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif Intell Med 37 (2006) 145-162 Epub 2006 May, 2023
    • (2006) Artif Intell Med , vol.37 , pp. 145-162
    • Mavroforakis, M.E.1    Georgiou, H.V.2    Dimitropoulos, N.3    Cavouras, D.4    Theodoridis, S.5
  • 14
    • 33746889778 scopus 로고    scopus 로고
    • Supervised feature ranking using a genetic algorithm optimized artificial neural network
    • Lin T.H., Chiu S.H., and Tsai K.C. Supervised feature ranking using a genetic algorithm optimized artificial neural network. J Chem Inf Model 46 (2006) 1604-1614
    • (2006) J Chem Inf Model , vol.46 , pp. 1604-1614
    • Lin, T.H.1    Chiu, S.H.2    Tsai, K.C.3
  • 15
    • 33645989110 scopus 로고    scopus 로고
    • Machine learning in soil classification
    • Bhattacharya B., and Solomatine D.P. Machine learning in soil classification. Neural Netw 19 (2006) 186-195
    • (2006) Neural Netw , vol.19 , pp. 186-195
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 16
    • 33646780174 scopus 로고    scopus 로고
    • Discrimination of outer membrane proteins using machine learning algorithms
    • Gromiha M.M., and Suwa M. Discrimination of outer membrane proteins using machine learning algorithms. Proteins 63 (2006) 1031-1037
    • (2006) Proteins , vol.63 , pp. 1031-1037
    • Gromiha, M.M.1    Suwa, M.2
  • 17
    • 33748259637 scopus 로고    scopus 로고
    • Better prediction of the location of alpha-turns in proteins with support vector machine
    • Wang Y., Xue Z., and Xu J. Better prediction of the location of alpha-turns in proteins with support vector machine. Proteins 65 (2006) 49-54
    • (2006) Proteins , vol.65 , pp. 49-54
    • Wang, Y.1    Xue, Z.2    Xu, J.3
  • 18
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks. Mach Learn 20 (1995) 273-297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Mach Learn 36 (2002) 131-159
    • (2002) Mach Learn , vol.36 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 20
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • Chung K.-M., Kao W.-C., Sun C.-L., Wang L.-L., and Lin C.-J. Radius margin bounds for support vector machines with the RBF kernel. Neural Comput 15 (2003) 2643-2681
    • (2003) Neural Comput , vol.15 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Sun, C.-L.3    Wang, L.-L.4    Lin, C.-J.5
  • 21
    • 23944487822 scopus 로고    scopus 로고
    • Gradient-based adaptation of general Gaussian kernels
    • Glasmachers T., and Igel C. Gradient-based adaptation of general Gaussian kernels. Neural Comput 17 (2005) 2099-2105
    • (2005) Neural Comput , vol.17 , pp. 2099-2105
    • Glasmachers, T.1    Igel, C.2
  • 22
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Friedrichs F., and Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 64 (2004) 107-117
    • (2004) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 23
    • 0022786756 scopus 로고
    • Probabilistic prediction in patient management and clinical trials
    • Spiegelhalter D.J. Probabilistic prediction in patient management and clinical trials. Stat Med 5 (1986) 421-433
    • (1986) Stat Med , vol.5 , pp. 421-433
    • Spiegelhalter, D.J.1
  • 24
    • 0035195534 scopus 로고    scopus 로고
    • American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes
    • Cannon C.P., Battler A., Brindis R.G., Cox J.L., Ellis S.G., Every N.R., et al. American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes. J Am Coll Cardiol 38 (2001) 2114-2130
    • (2001) J Am Coll Cardiol , vol.38 , pp. 2114-2130
    • Cannon, C.P.1    Battler, A.2    Brindis, R.G.3    Cox, J.L.4    Ellis, S.G.5    Every, N.R.6
  • 25
    • 0032860028 scopus 로고    scopus 로고
    • Multivariate prediction of in-hospital mortality after percutaneous coronary interventions in 1994-1996
    • O'Connor G.T., Malenka D.J., Quinton H., Robb J.F., Kellett Jr. M.A., Shubrooks S., et al. Multivariate prediction of in-hospital mortality after percutaneous coronary interventions in 1994-1996. J Am Coll Cardiol 34 (1999) 681-691
    • (1999) J Am Coll Cardiol , vol.34 , pp. 681-691
    • O'Connor, G.T.1    Malenka, D.J.2    Quinton, H.3    Robb, J.F.4    Kellett Jr., M.A.5    Shubrooks, S.6
  • 26
    • 0026485412 scopus 로고
    • Percutaneous transluminal coronary angioplasty in New York State risk factors and outcomes
    • Hannan E.L., Arani D.T., Johnson L.W., Kemp Jr. H.G., and Lukacik G. Percutaneous transluminal coronary angioplasty in New York State risk factors and outcomes. JAMA 268 (1992) 3092-3097
    • (1992) JAMA , vol.268 , pp. 3092-3097
    • Hannan, E.L.1    Arani, D.T.2    Johnson, L.W.3    Kemp Jr., H.G.4    Lukacik, G.5
  • 27
    • 0030898397 scopus 로고    scopus 로고
    • Coronary angioplasty volume-outcome relationships for hospitals and cardiologists
    • Hannan E.L., Racz M., Ryan T.J., McCallister B.D., Johnson L.W., Arani D.T., et al. Coronary angioplasty volume-outcome relationships for hospitals and cardiologists. JAMA 277 (1997) 892-898
    • (1997) JAMA , vol.277 , pp. 892-898
    • Hannan, E.L.1    Racz, M.2    Ryan, T.J.3    McCallister, B.D.4    Johnson, L.W.5    Arani, D.T.6
  • 28
    • 0035902515 scopus 로고    scopus 로고
    • Simple bedside additive tool for prediction of in-hospital mortality after percutaneous coronary interventions
    • Moscucci M., Kline-Rogers E., Share D., O'Donnell M., Maxwell-Eward A., Meengs W.L., et al. Simple bedside additive tool for prediction of in-hospital mortality after percutaneous coronary interventions. Circulation 104 (2001) 263-268
    • (2001) Circulation , vol.104 , pp. 263-268
    • Moscucci, M.1    Kline-Rogers, E.2    Share, D.3    O'Donnell, M.4    Maxwell-Eward, A.5    Meengs, W.L.6
  • 29
    • 0037012351 scopus 로고    scopus 로고
    • Development of a risk adjustment mortality model using the American College of Cardiology-National Cardiovascular Data Registry (ACC-NCDR) experience: 1998-2000
    • Shaw R.E., Anderson H.V., Brindis R.G., Krone R.J., Klein L.W., McKay C.R., et al. Development of a risk adjustment mortality model using the American College of Cardiology-National Cardiovascular Data Registry (ACC-NCDR) experience: 1998-2000. J Am Coll Cardiol 39 (2002) 1104-1112
    • (2002) J Am Coll Cardiol , vol.39 , pp. 1104-1112
    • Shaw, R.E.1    Anderson, H.V.2    Brindis, R.G.3    Krone, R.J.4    Klein, L.W.5    McKay, C.R.6
  • 30
    • 0030923225 scopus 로고    scopus 로고
    • Relation of operator volume and experience to procedural outcome of percutaneous coronary revascularization at hospitals with high interventional volumes
    • Ellis S.G., Weintraub W., Holmes D., Shaw R., Block P.C., and King III S.B. Relation of operator volume and experience to procedural outcome of percutaneous coronary revascularization at hospitals with high interventional volumes. Circulation 95 (1997) 2479-2484
    • (1997) Circulation , vol.95 , pp. 2479-2484
    • Ellis, S.G.1    Weintraub, W.2    Holmes, D.3    Shaw, R.4    Block, P.C.5    King III, S.B.6
  • 31
    • 0035400101 scopus 로고    scopus 로고
    • Simplified risk score models accurately predict the risk of major in-hospital complications following percutaneous coronary intervention
    • Resnic F.S., Ohno-Machado L., Selwyn A., Simon D.I., and Popma J.J. Simplified risk score models accurately predict the risk of major in-hospital complications following percutaneous coronary intervention. Am J Cardiol 88 (2001) 5-9
    • (2001) Am J Cardiol , vol.88 , pp. 5-9
    • Resnic, F.S.1    Ohno-Machado, L.2    Selwyn, A.3    Simon, D.I.4    Popma, J.J.5
  • 32
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982) 29-36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 33
    • 0020063002 scopus 로고
    • A review of goodness of fit statistics for use in the development of logistic regression models
    • Lemeshow S., and Hosmer Jr. D.W. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 115 (1982) 92-106
    • (1982) Am J Epidemiol , vol.115 , pp. 92-106
    • Lemeshow, S.1    Hosmer Jr., D.W.2
  • 34
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S., and Leibler R.A. On information and sufficiency. Ann Math Stat 22 (1951) 79-86
    • (1951) Ann Math Stat , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 35
    • 1542609551 scopus 로고    scopus 로고
    • Support vector machine classification on the web
    • Pavlidis P., Wapinski I., and Noble W.S. Support vector machine classification on the web. Bioinformatics 20 (2004) 586-587
    • (2004) Bioinformatics , vol.20 , pp. 586-587
    • Pavlidis, P.1    Wapinski, I.2    Noble, W.S.3
  • 36
    • 85044704563 scopus 로고    scopus 로고
    • Comparison of machine learning techniques with classical statistical models in predicting health outcomes
    • Song X., Mitnitski A., Cox J., and Rockwood K. Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Medinfo 11 (2004) 736-740
    • (2004) Medinfo , vol.11 , pp. 736-740
    • Song, X.1    Mitnitski, A.2    Cox, J.3    Rockwood, K.4
  • 37
    • 0031272926 scopus 로고    scopus 로고
    • Comparing support vector machines with Gaussian kernels to radial basis function classifiers
    • Scholkopf B., Sung K., Burges C., Girosi F., Niyogi P., Poggio T., et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Sig Proc 45 (1997) 2758-2765
    • (1997) IEEE Trans Sig Proc , vol.45 , pp. 2758-2765
    • Scholkopf, B.1    Sung, K.2    Burges, C.3    Girosi, F.4    Niyogi, P.5    Poggio, T.6
  • 39
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge, MA
    • Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds). Advances in large margin classiers (1999), MIT Press, Cambridge, MA
    • (1999) Advances in large margin classiers
    • Platt, J.1
  • 40
    • 36048960519 scopus 로고    scopus 로고
    • Lin H-T, Lin C-J, Weng RC. A note on Platt's probabilistic outputs for support vector machines. [accessed: 03.08.06].
  • 41
    • 36048986738 scopus 로고    scopus 로고
    • Platt J. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A, editors. Advances in kernel methods-Support vector learning, 1998.
  • 44
    • 0006232427 scopus 로고
    • Analysis of variance with just summary statistics as input
    • Larson D.A. Analysis of variance with just summary statistics as input. Am Stat 46 (1992) 151-152
    • (1992) Am Stat , vol.46 , pp. 151-152
    • Larson, D.A.1
  • 45
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • Valentini G., and Dietterich T.G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J Mach Learn Res 5 (2004) 725-775
    • (2004) J Mach Learn Res , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 47
    • 26044483543 scopus 로고    scopus 로고
    • Discrimination and calibration of mortality risk prediction models in interventional cardiology
    • Epub 2005 March, 2026
    • Matheny M.E., Ohno-Machado L., and Resnic F.S. Discrimination and calibration of mortality risk prediction models in interventional cardiology. J Biomed Inform 38 (2005) 367-375 Epub 2005 March, 2026
    • (2005) J Biomed Inform , vol.38 , pp. 367-375
    • Matheny, M.E.1    Ohno-Machado, L.2    Resnic, F.S.3
  • 48
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A., Aliferis C.F., Tsamardinos I., Hardin D., and Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21 (2005) 631-643
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 49
    • 0034567668 scopus 로고    scopus 로고
    • One model, several results: the Paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model
    • Bertolini G., D'Amico R., Nardi D., Tinazzi A., and Apolone G. One model, several results: the Paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model. J Epidemiol Biostat 5 (2000) 251-253
    • (2000) J Epidemiol Biostat , vol.5 , pp. 251-253
    • Bertolini, G.1    D'Amico, R.2    Nardi, D.3    Tinazzi, A.4    Apolone, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.