-
1
-
-
0031918615
-
Understanding articles comparing outcomes among intensive care units to rate quality of care. Evidence based medicine in critical care group
-
Randolph A.G., Guyatt G.H., and Carlet J. Understanding articles comparing outcomes among intensive care units to rate quality of care. Evidence based medicine in critical care group. Crit Care Med 26 (1998) 773-781
-
(1998)
Crit Care Med
, vol.26
, pp. 773-781
-
-
Randolph, A.G.1
Guyatt, G.H.2
Carlet, J.3
-
2
-
-
0029068014
-
Readiness for the scorecard era in cardiovascular medicine
-
Topol E.J., Block P.C., Holmes D.R., Klinke W.P., and Brinker J.A. Readiness for the scorecard era in cardiovascular medicine. Am J Cardiol 75 (1995) 1170-1173
-
(1995)
Am J Cardiol
, vol.75
, pp. 1170-1173
-
-
Topol, E.J.1
Block, P.C.2
Holmes, D.R.3
Klinke, W.P.4
Brinker, J.A.5
-
3
-
-
0031178260
-
Predicting survival in the intensive care unit
-
Hunt J.P., and Meyer A.A. Predicting survival in the intensive care unit. Curr Prob Surg 34 (1997) 527-599
-
(1997)
Curr Prob Surg
, vol.34
, pp. 527-599
-
-
Hunt, J.P.1
Meyer, A.A.2
-
4
-
-
0021297733
-
The value of measuring severity of disease in clinical research on acutely ill patients
-
Knaus W.A., Wagner D.P., and Draper E.A. The value of measuring severity of disease in clinical research on acutely ill patients. J Chronic Dis 37 (1984) 455-463
-
(1984)
J Chronic Dis
, vol.37
, pp. 455-463
-
-
Knaus, W.A.1
Wagner, D.P.2
Draper, E.A.3
-
5
-
-
13244258275
-
Predicting patient outcomes, futility, and resource utilization in the intensive care unit: the role of severity scoring systems and general outcome prediction models
-
Mendez-Tellez P.A., and Dorman T. Predicting patient outcomes, futility, and resource utilization in the intensive care unit: the role of severity scoring systems and general outcome prediction models. Mayo Clin Proc 80 (2005) 161-163
-
(2005)
Mayo Clin Proc
, vol.80
, pp. 161-163
-
-
Mendez-Tellez, P.A.1
Dorman, T.2
-
6
-
-
33744821668
-
Risk scoring in perioperative and surgical intensive care patients: a review
-
Hariharan S., and Zbar A. Risk scoring in perioperative and surgical intensive care patients: a review. Curr Surg 63 (2006) 226-236
-
(2006)
Curr Surg
, vol.63
, pp. 226-236
-
-
Hariharan, S.1
Zbar, A.2
-
7
-
-
0026966646
-
-
ACM Press, Pittsburgh, PA
-
Boser B.E., Guyon I.M., and Vapnik V.N. A training algorithm for optimal margin classifiers (1992), ACM Press, Pittsburgh, PA
-
(1992)
A training algorithm for optimal margin classifiers
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
9
-
-
0034981810
-
A comparison of machine learning methods for the diagnosis of pigmented skin lesions
-
Dreiseitl S., Ohno-Machado L., Kittler H., Vinterbo S., Billhardt H., and Binder M. A comparison of machine learning methods for the diagnosis of pigmented skin lesions. J Biomed Inform 34 (2001) 28-36
-
(2001)
J Biomed Inform
, vol.34
, pp. 28-36
-
-
Dreiseitl, S.1
Ohno-Machado, L.2
Kittler, H.3
Vinterbo, S.4
Billhardt, H.5
Binder, M.6
-
10
-
-
36049049832
-
-
Gwiggner C, Lanckriet G. Characteristics in flight data-estimation with logistic regression and support vector machines. In: International conference on research in air transportation, Zilina, Slovakia, 2004.
-
-
-
-
11
-
-
33748349842
-
Support vector machine learning model for the prediction of sentinel node status in patients with cutaneous melanoma
-
Mocellin S., Ambrosi A., Montesco M.C., Foletto M., Zavagno G., Nitti D., et al. Support vector machine learning model for the prediction of sentinel node status in patients with cutaneous melanoma. Ann Surg Oncol 13 (2006) 1113-1122
-
(2006)
Ann Surg Oncol
, vol.13
, pp. 1113-1122
-
-
Mocellin, S.1
Ambrosi, A.2
Montesco, M.C.3
Foletto, M.4
Zavagno, G.5
Nitti, D.6
-
12
-
-
33746051706
-
Computational prediction of methylation status in human genomic sequences
-
Das R., Dimitrova N., Xuan Z., Rollins R.A., Haghighi F., Edwards J.R., et al. Computational prediction of methylation status in human genomic sequences. Proc Natl Acad Sci USA 103 (2006) 10713-10716
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 10713-10716
-
-
Das, R.1
Dimitrova, N.2
Xuan, Z.3
Rollins, R.A.4
Haghighi, F.5
Edwards, J.R.6
-
13
-
-
33744535368
-
Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
-
Epub 2006 May, 2023
-
Mavroforakis M.E., Georgiou H.V., Dimitropoulos N., Cavouras D., and Theodoridis S. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif Intell Med 37 (2006) 145-162 Epub 2006 May, 2023
-
(2006)
Artif Intell Med
, vol.37
, pp. 145-162
-
-
Mavroforakis, M.E.1
Georgiou, H.V.2
Dimitropoulos, N.3
Cavouras, D.4
Theodoridis, S.5
-
14
-
-
33746889778
-
Supervised feature ranking using a genetic algorithm optimized artificial neural network
-
Lin T.H., Chiu S.H., and Tsai K.C. Supervised feature ranking using a genetic algorithm optimized artificial neural network. J Chem Inf Model 46 (2006) 1604-1614
-
(2006)
J Chem Inf Model
, vol.46
, pp. 1604-1614
-
-
Lin, T.H.1
Chiu, S.H.2
Tsai, K.C.3
-
15
-
-
33645989110
-
Machine learning in soil classification
-
Bhattacharya B., and Solomatine D.P. Machine learning in soil classification. Neural Netw 19 (2006) 186-195
-
(2006)
Neural Netw
, vol.19
, pp. 186-195
-
-
Bhattacharya, B.1
Solomatine, D.P.2
-
16
-
-
33646780174
-
Discrimination of outer membrane proteins using machine learning algorithms
-
Gromiha M.M., and Suwa M. Discrimination of outer membrane proteins using machine learning algorithms. Proteins 63 (2006) 1031-1037
-
(2006)
Proteins
, vol.63
, pp. 1031-1037
-
-
Gromiha, M.M.1
Suwa, M.2
-
17
-
-
33748259637
-
Better prediction of the location of alpha-turns in proteins with support vector machine
-
Wang Y., Xue Z., and Xu J. Better prediction of the location of alpha-turns in proteins with support vector machine. Proteins 65 (2006) 49-54
-
(2006)
Proteins
, vol.65
, pp. 49-54
-
-
Wang, Y.1
Xue, Z.2
Xu, J.3
-
18
-
-
34249753618
-
Support-vector networks
-
Cortes C., and Vapnik V. Support-vector networks. Mach Learn 20 (1995) 273-297
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
20
-
-
0141430928
-
Radius margin bounds for support vector machines with the RBF kernel
-
Chung K.-M., Kao W.-C., Sun C.-L., Wang L.-L., and Lin C.-J. Radius margin bounds for support vector machines with the RBF kernel. Neural Comput 15 (2003) 2643-2681
-
(2003)
Neural Comput
, vol.15
, pp. 2643-2681
-
-
Chung, K.-M.1
Kao, W.-C.2
Sun, C.-L.3
Wang, L.-L.4
Lin, C.-J.5
-
21
-
-
23944487822
-
Gradient-based adaptation of general Gaussian kernels
-
Glasmachers T., and Igel C. Gradient-based adaptation of general Gaussian kernels. Neural Comput 17 (2005) 2099-2105
-
(2005)
Neural Comput
, vol.17
, pp. 2099-2105
-
-
Glasmachers, T.1
Igel, C.2
-
22
-
-
15844394276
-
Evolutionary tuning of multiple SVM parameters
-
Friedrichs F., and Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 64 (2004) 107-117
-
(2004)
Neurocomputing
, vol.64
, pp. 107-117
-
-
Friedrichs, F.1
Igel, C.2
-
23
-
-
0022786756
-
Probabilistic prediction in patient management and clinical trials
-
Spiegelhalter D.J. Probabilistic prediction in patient management and clinical trials. Stat Med 5 (1986) 421-433
-
(1986)
Stat Med
, vol.5
, pp. 421-433
-
-
Spiegelhalter, D.J.1
-
24
-
-
0035195534
-
American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes
-
Cannon C.P., Battler A., Brindis R.G., Cox J.L., Ellis S.G., Every N.R., et al. American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes. J Am Coll Cardiol 38 (2001) 2114-2130
-
(2001)
J Am Coll Cardiol
, vol.38
, pp. 2114-2130
-
-
Cannon, C.P.1
Battler, A.2
Brindis, R.G.3
Cox, J.L.4
Ellis, S.G.5
Every, N.R.6
-
25
-
-
0032860028
-
Multivariate prediction of in-hospital mortality after percutaneous coronary interventions in 1994-1996
-
O'Connor G.T., Malenka D.J., Quinton H., Robb J.F., Kellett Jr. M.A., Shubrooks S., et al. Multivariate prediction of in-hospital mortality after percutaneous coronary interventions in 1994-1996. J Am Coll Cardiol 34 (1999) 681-691
-
(1999)
J Am Coll Cardiol
, vol.34
, pp. 681-691
-
-
O'Connor, G.T.1
Malenka, D.J.2
Quinton, H.3
Robb, J.F.4
Kellett Jr., M.A.5
Shubrooks, S.6
-
26
-
-
0026485412
-
Percutaneous transluminal coronary angioplasty in New York State risk factors and outcomes
-
Hannan E.L., Arani D.T., Johnson L.W., Kemp Jr. H.G., and Lukacik G. Percutaneous transluminal coronary angioplasty in New York State risk factors and outcomes. JAMA 268 (1992) 3092-3097
-
(1992)
JAMA
, vol.268
, pp. 3092-3097
-
-
Hannan, E.L.1
Arani, D.T.2
Johnson, L.W.3
Kemp Jr., H.G.4
Lukacik, G.5
-
27
-
-
0030898397
-
Coronary angioplasty volume-outcome relationships for hospitals and cardiologists
-
Hannan E.L., Racz M., Ryan T.J., McCallister B.D., Johnson L.W., Arani D.T., et al. Coronary angioplasty volume-outcome relationships for hospitals and cardiologists. JAMA 277 (1997) 892-898
-
(1997)
JAMA
, vol.277
, pp. 892-898
-
-
Hannan, E.L.1
Racz, M.2
Ryan, T.J.3
McCallister, B.D.4
Johnson, L.W.5
Arani, D.T.6
-
28
-
-
0035902515
-
Simple bedside additive tool for prediction of in-hospital mortality after percutaneous coronary interventions
-
Moscucci M., Kline-Rogers E., Share D., O'Donnell M., Maxwell-Eward A., Meengs W.L., et al. Simple bedside additive tool for prediction of in-hospital mortality after percutaneous coronary interventions. Circulation 104 (2001) 263-268
-
(2001)
Circulation
, vol.104
, pp. 263-268
-
-
Moscucci, M.1
Kline-Rogers, E.2
Share, D.3
O'Donnell, M.4
Maxwell-Eward, A.5
Meengs, W.L.6
-
29
-
-
0037012351
-
Development of a risk adjustment mortality model using the American College of Cardiology-National Cardiovascular Data Registry (ACC-NCDR) experience: 1998-2000
-
Shaw R.E., Anderson H.V., Brindis R.G., Krone R.J., Klein L.W., McKay C.R., et al. Development of a risk adjustment mortality model using the American College of Cardiology-National Cardiovascular Data Registry (ACC-NCDR) experience: 1998-2000. J Am Coll Cardiol 39 (2002) 1104-1112
-
(2002)
J Am Coll Cardiol
, vol.39
, pp. 1104-1112
-
-
Shaw, R.E.1
Anderson, H.V.2
Brindis, R.G.3
Krone, R.J.4
Klein, L.W.5
McKay, C.R.6
-
30
-
-
0030923225
-
Relation of operator volume and experience to procedural outcome of percutaneous coronary revascularization at hospitals with high interventional volumes
-
Ellis S.G., Weintraub W., Holmes D., Shaw R., Block P.C., and King III S.B. Relation of operator volume and experience to procedural outcome of percutaneous coronary revascularization at hospitals with high interventional volumes. Circulation 95 (1997) 2479-2484
-
(1997)
Circulation
, vol.95
, pp. 2479-2484
-
-
Ellis, S.G.1
Weintraub, W.2
Holmes, D.3
Shaw, R.4
Block, P.C.5
King III, S.B.6
-
31
-
-
0035400101
-
Simplified risk score models accurately predict the risk of major in-hospital complications following percutaneous coronary intervention
-
Resnic F.S., Ohno-Machado L., Selwyn A., Simon D.I., and Popma J.J. Simplified risk score models accurately predict the risk of major in-hospital complications following percutaneous coronary intervention. Am J Cardiol 88 (2001) 5-9
-
(2001)
Am J Cardiol
, vol.88
, pp. 5-9
-
-
Resnic, F.S.1
Ohno-Machado, L.2
Selwyn, A.3
Simon, D.I.4
Popma, J.J.5
-
32
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982) 29-36
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
33
-
-
0020063002
-
A review of goodness of fit statistics for use in the development of logistic regression models
-
Lemeshow S., and Hosmer Jr. D.W. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 115 (1982) 92-106
-
(1982)
Am J Epidemiol
, vol.115
, pp. 92-106
-
-
Lemeshow, S.1
Hosmer Jr., D.W.2
-
34
-
-
0001927585
-
On information and sufficiency
-
Kullback S., and Leibler R.A. On information and sufficiency. Ann Math Stat 22 (1951) 79-86
-
(1951)
Ann Math Stat
, vol.22
, pp. 79-86
-
-
Kullback, S.1
Leibler, R.A.2
-
35
-
-
1542609551
-
Support vector machine classification on the web
-
Pavlidis P., Wapinski I., and Noble W.S. Support vector machine classification on the web. Bioinformatics 20 (2004) 586-587
-
(2004)
Bioinformatics
, vol.20
, pp. 586-587
-
-
Pavlidis, P.1
Wapinski, I.2
Noble, W.S.3
-
36
-
-
85044704563
-
Comparison of machine learning techniques with classical statistical models in predicting health outcomes
-
Song X., Mitnitski A., Cox J., and Rockwood K. Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Medinfo 11 (2004) 736-740
-
(2004)
Medinfo
, vol.11
, pp. 736-740
-
-
Song, X.1
Mitnitski, A.2
Cox, J.3
Rockwood, K.4
-
37
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to radial basis function classifiers
-
Scholkopf B., Sung K., Burges C., Girosi F., Niyogi P., Poggio T., et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Sig Proc 45 (1997) 2758-2765
-
(1997)
IEEE Trans Sig Proc
, vol.45
, pp. 2758-2765
-
-
Scholkopf, B.1
Sung, K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
-
39
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
-
Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge, MA
-
Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds). Advances in large margin classiers (1999), MIT Press, Cambridge, MA
-
(1999)
Advances in large margin classiers
-
-
Platt, J.1
-
40
-
-
36048960519
-
-
Lin H-T, Lin C-J, Weng RC. A note on Platt's probabilistic outputs for support vector machines. [accessed: 03.08.06].
-
-
-
-
41
-
-
36048986738
-
-
Platt J. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A, editors. Advances in kernel methods-Support vector learning, 1998.
-
-
-
-
44
-
-
0006232427
-
Analysis of variance with just summary statistics as input
-
Larson D.A. Analysis of variance with just summary statistics as input. Am Stat 46 (1992) 151-152
-
(1992)
Am Stat
, vol.46
, pp. 151-152
-
-
Larson, D.A.1
-
45
-
-
26944501740
-
Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
-
Valentini G., and Dietterich T.G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J Mach Learn Res 5 (2004) 725-775
-
(2004)
J Mach Learn Res
, vol.5
, pp. 725-775
-
-
Valentini, G.1
Dietterich, T.G.2
-
47
-
-
26044483543
-
Discrimination and calibration of mortality risk prediction models in interventional cardiology
-
Epub 2005 March, 2026
-
Matheny M.E., Ohno-Machado L., and Resnic F.S. Discrimination and calibration of mortality risk prediction models in interventional cardiology. J Biomed Inform 38 (2005) 367-375 Epub 2005 March, 2026
-
(2005)
J Biomed Inform
, vol.38
, pp. 367-375
-
-
Matheny, M.E.1
Ohno-Machado, L.2
Resnic, F.S.3
-
48
-
-
15844413351
-
A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
-
Statnikov A., Aliferis C.F., Tsamardinos I., Hardin D., and Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21 (2005) 631-643
-
(2005)
Bioinformatics
, vol.21
, pp. 631-643
-
-
Statnikov, A.1
Aliferis, C.F.2
Tsamardinos, I.3
Hardin, D.4
Levy, S.5
-
49
-
-
0034567668
-
One model, several results: the Paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model
-
Bertolini G., D'Amico R., Nardi D., Tinazzi A., and Apolone G. One model, several results: the Paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model. J Epidemiol Biostat 5 (2000) 251-253
-
(2000)
J Epidemiol Biostat
, vol.5
, pp. 251-253
-
-
Bertolini, G.1
D'Amico, R.2
Nardi, D.3
Tinazzi, A.4
Apolone, G.5
|